基于质心Voronoi镶嵌和模型预测控制的微卫星群宏微轨迹优化

Xiwei Wu, Bing Xiao, Cihang Wu, Yiming Guo
{"title":"基于质心Voronoi镶嵌和模型预测控制的微卫星群宏微轨迹优化","authors":"Xiwei Wu, Bing Xiao, Cihang Wu, Yiming Guo","doi":"10.34133/2022/9802195","DOIUrl":null,"url":null,"abstract":"Probabilistic swarm guidance enables autonomous microsatellites to generate their individual trajectories independently so that the entire swarm converges to the desired distribution shape. However, it is essential to avoid crowding for reducing the possibility of collisions between microsatellites. To determine the collision-free guidance trajectory of each microsatellite from the current position to the target space, a collision avoidance algorithm is necessary. A synthesis method is proposed that generate the collision avoidance trajectories. The idea is that the trajectory planning is divided into macro-planning and micro-planning; macro-planning guides where the microsatellites move step by step from the initial cube to the target cube by probabilistic swarm guidance with Centroidal Voronoi tessellation, while the micro-planning is to generate the optimal path for each step and finally reach the specified position in the target cube by model predictive control. Simulation results are presented for the collision-free guidance trajectory of microsatellites to verify the benefits of this planning scheme.","PeriodicalId":136587,"journal":{"name":"Space: Science & Technology","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Centroidal Voronoi Tessellation and Model Predictive Control–Based Macro-Micro Trajectory Optimization of Microsatellite Swarm\",\"authors\":\"Xiwei Wu, Bing Xiao, Cihang Wu, Yiming Guo\",\"doi\":\"10.34133/2022/9802195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Probabilistic swarm guidance enables autonomous microsatellites to generate their individual trajectories independently so that the entire swarm converges to the desired distribution shape. However, it is essential to avoid crowding for reducing the possibility of collisions between microsatellites. To determine the collision-free guidance trajectory of each microsatellite from the current position to the target space, a collision avoidance algorithm is necessary. A synthesis method is proposed that generate the collision avoidance trajectories. The idea is that the trajectory planning is divided into macro-planning and micro-planning; macro-planning guides where the microsatellites move step by step from the initial cube to the target cube by probabilistic swarm guidance with Centroidal Voronoi tessellation, while the micro-planning is to generate the optimal path for each step and finally reach the specified position in the target cube by model predictive control. Simulation results are presented for the collision-free guidance trajectory of microsatellites to verify the benefits of this planning scheme.\",\"PeriodicalId\":136587,\"journal\":{\"name\":\"Space: Science & Technology\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Space: Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34133/2022/9802195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space: Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/2022/9802195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

概率群制导使自主微卫星能够独立生成各自的轨迹,从而使整个微卫星群收敛到期望的分布形状。但是,为了减少微型卫星之间碰撞的可能性,必须避免拥挤。为了确定每个微卫星从当前位置到目标空间的无碰撞制导轨迹,需要避碰算法。提出了一种合成避碰轨迹的方法。其思想是将轨迹规划分为宏观规划和微观规划;宏观规划是微卫星利用质心Voronoi镶嵌的概率群制导,从初始立方体逐步移动到目标立方体,微观规划是通过模型预测控制,为每一步生成最优路径,最终到达目标立方体的指定位置。通过对微卫星无碰撞制导轨迹的仿真,验证了该规划方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Centroidal Voronoi Tessellation and Model Predictive Control–Based Macro-Micro Trajectory Optimization of Microsatellite Swarm
Probabilistic swarm guidance enables autonomous microsatellites to generate their individual trajectories independently so that the entire swarm converges to the desired distribution shape. However, it is essential to avoid crowding for reducing the possibility of collisions between microsatellites. To determine the collision-free guidance trajectory of each microsatellite from the current position to the target space, a collision avoidance algorithm is necessary. A synthesis method is proposed that generate the collision avoidance trajectories. The idea is that the trajectory planning is divided into macro-planning and micro-planning; macro-planning guides where the microsatellites move step by step from the initial cube to the target cube by probabilistic swarm guidance with Centroidal Voronoi tessellation, while the micro-planning is to generate the optimal path for each step and finally reach the specified position in the target cube by model predictive control. Simulation results are presented for the collision-free guidance trajectory of microsatellites to verify the benefits of this planning scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信