模糊k均值的复杂性理论研究

Johannes Blömer, Sascha Brauer, Kathrin Bujna
{"title":"模糊k均值的复杂性理论研究","authors":"Johannes Blömer, Sascha Brauer, Kathrin Bujna","doi":"10.1145/3409385","DOIUrl":null,"url":null,"abstract":"The fuzzy K-means problem is a popular generalization of the well-known K-means problem to soft clusterings. In this article, we present the first algorithmic study of the problem going beyond heuristics. Our main result is that, assuming a constant number of clusters, there is a polynomial time approximation scheme for the fuzzy K-means problem. As a part of our analysis, we also prove the existence of small coresets for fuzzy K-means. At the heart of our proofs are two novel techniques developed to analyze the otherwise notoriously difficult fuzzy K-means objective function.","PeriodicalId":154047,"journal":{"name":"ACM Transactions on Algorithms (TALG)","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Complexity Theoretical Study of Fuzzy K-Means\",\"authors\":\"Johannes Blömer, Sascha Brauer, Kathrin Bujna\",\"doi\":\"10.1145/3409385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fuzzy K-means problem is a popular generalization of the well-known K-means problem to soft clusterings. In this article, we present the first algorithmic study of the problem going beyond heuristics. Our main result is that, assuming a constant number of clusters, there is a polynomial time approximation scheme for the fuzzy K-means problem. As a part of our analysis, we also prove the existence of small coresets for fuzzy K-means. At the heart of our proofs are two novel techniques developed to analyze the otherwise notoriously difficult fuzzy K-means objective function.\",\"PeriodicalId\":154047,\"journal\":{\"name\":\"ACM Transactions on Algorithms (TALG)\",\"volume\":\"125 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Algorithms (TALG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3409385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms (TALG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3409385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

模糊k -均值问题是众所周知的k -均值问题在软聚类中的推广。在本文中,我们提出了超越启发式的问题的第一个算法研究。我们的主要结果是,假设有一个常数簇,有一个多项式时间逼近方案的模糊k -均值问题。作为分析的一部分,我们还证明了模糊k均值的小核心集的存在性。我们证明的核心是两种新技术,用于分析否则非常困难的模糊k -均值目标函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Complexity Theoretical Study of Fuzzy K-Means
The fuzzy K-means problem is a popular generalization of the well-known K-means problem to soft clusterings. In this article, we present the first algorithmic study of the problem going beyond heuristics. Our main result is that, assuming a constant number of clusters, there is a polynomial time approximation scheme for the fuzzy K-means problem. As a part of our analysis, we also prove the existence of small coresets for fuzzy K-means. At the heart of our proofs are two novel techniques developed to analyze the otherwise notoriously difficult fuzzy K-means objective function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信