基于卷积神经网络的眼底硬渗出物检测

Ittided Poonkasem, N. Theera-Umpon, S. Auephanwiriyakul, D. Patikulsila
{"title":"基于卷积神经网络的眼底硬渗出物检测","authors":"Ittided Poonkasem, N. Theera-Umpon, S. Auephanwiriyakul, D. Patikulsila","doi":"10.1109/ICGHIT.2019.00025","DOIUrl":null,"url":null,"abstract":"The patients with diabetes have a chance to have blindness. An impairment of metabolism can cause a high glucose level in blood vessel leading to an abnormality called hard exudates. Hard exudates are often arranged in clumps or circinate rings and located in the outer layer of the retina. The aim of this research is to detect hard exudates by applying image processing techniques and classify them by using convolutional neuron network (CNN). DIARETDB1 dataset is used in the experiments. The proposed method achieves the area under the curve (AUC) of 0.97 and 0.95 on the training and validation sets, respectively, of 10-fold cross validation experiment. These show that the combination of image processing techniques, three channels of fundus images, and CNN can perform as a promising classification tool in hard exudates detection system.","PeriodicalId":160708,"journal":{"name":"2019 International Conference on Green and Human Information Technology (ICGHIT)","volume":"226 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Detection of Hard Exudates in Fundus Images Using Convolutional Neural Networks\",\"authors\":\"Ittided Poonkasem, N. Theera-Umpon, S. Auephanwiriyakul, D. Patikulsila\",\"doi\":\"10.1109/ICGHIT.2019.00025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The patients with diabetes have a chance to have blindness. An impairment of metabolism can cause a high glucose level in blood vessel leading to an abnormality called hard exudates. Hard exudates are often arranged in clumps or circinate rings and located in the outer layer of the retina. The aim of this research is to detect hard exudates by applying image processing techniques and classify them by using convolutional neuron network (CNN). DIARETDB1 dataset is used in the experiments. The proposed method achieves the area under the curve (AUC) of 0.97 and 0.95 on the training and validation sets, respectively, of 10-fold cross validation experiment. These show that the combination of image processing techniques, three channels of fundus images, and CNN can perform as a promising classification tool in hard exudates detection system.\",\"PeriodicalId\":160708,\"journal\":{\"name\":\"2019 International Conference on Green and Human Information Technology (ICGHIT)\",\"volume\":\"226 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Green and Human Information Technology (ICGHIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICGHIT.2019.00025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Green and Human Information Technology (ICGHIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICGHIT.2019.00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

糖尿病患者有可能失明。代谢障碍会导致血管中的高血糖水平,导致一种叫做硬渗出物的异常。硬渗出物常呈团状或环状排列,位于视网膜外层。本研究的目的是利用图像处理技术检测硬渗出物,并利用卷积神经元网络(CNN)对其进行分类。实验使用DIARETDB1数据集。该方法在10次交叉验证实验的训练集和验证集上的曲线下面积(AUC)分别为0.97和0.95。这表明,将图像处理技术、眼底三通道图像与CNN相结合,在硬渗出物检测系统中可以作为一种很有前途的分类工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of Hard Exudates in Fundus Images Using Convolutional Neural Networks
The patients with diabetes have a chance to have blindness. An impairment of metabolism can cause a high glucose level in blood vessel leading to an abnormality called hard exudates. Hard exudates are often arranged in clumps or circinate rings and located in the outer layer of the retina. The aim of this research is to detect hard exudates by applying image processing techniques and classify them by using convolutional neuron network (CNN). DIARETDB1 dataset is used in the experiments. The proposed method achieves the area under the curve (AUC) of 0.97 and 0.95 on the training and validation sets, respectively, of 10-fold cross validation experiment. These show that the combination of image processing techniques, three channels of fundus images, and CNN can perform as a promising classification tool in hard exudates detection system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信