{"title":"利用新一代测序数据跟踪SARS-CoV-2病毒突变进化和物种形成的机器学习模型","authors":"I. Derecichei, G. Atikukke","doi":"10.1145/3388440.3415991","DOIUrl":null,"url":null,"abstract":"RNA sequence analysis of emerging SARS-CoV-2 infection is valuable for tracking viral evolution and developing novel diagnostic tools. Furthermore, SARS-CoV-2 sequence analysis can provide insight into potential antigenic drift events that lead to strain speciation and changing clinical outcomes. In this work, we aim to develop a pipeline using next-generation sequencing (NGS) technology in addition to machine learning/bioinformatics to track the accumulation of mutations and viral evolution.","PeriodicalId":411338,"journal":{"name":"Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Machine Learning Model to Track SARS-CoV-2 Viral Mutation Evolution and Speciation Using Next-generation Sequencing Data\",\"authors\":\"I. Derecichei, G. Atikukke\",\"doi\":\"10.1145/3388440.3415991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"RNA sequence analysis of emerging SARS-CoV-2 infection is valuable for tracking viral evolution and developing novel diagnostic tools. Furthermore, SARS-CoV-2 sequence analysis can provide insight into potential antigenic drift events that lead to strain speciation and changing clinical outcomes. In this work, we aim to develop a pipeline using next-generation sequencing (NGS) technology in addition to machine learning/bioinformatics to track the accumulation of mutations and viral evolution.\",\"PeriodicalId\":411338,\"journal\":{\"name\":\"Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3388440.3415991\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3388440.3415991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Machine Learning Model to Track SARS-CoV-2 Viral Mutation Evolution and Speciation Using Next-generation Sequencing Data
RNA sequence analysis of emerging SARS-CoV-2 infection is valuable for tracking viral evolution and developing novel diagnostic tools. Furthermore, SARS-CoV-2 sequence analysis can provide insight into potential antigenic drift events that lead to strain speciation and changing clinical outcomes. In this work, we aim to develop a pipeline using next-generation sequencing (NGS) technology in addition to machine learning/bioinformatics to track the accumulation of mutations and viral evolution.