混合特征学习算法的优化

M. Srihari, Zahra Gholipour, Reza Khoshkangini, Abbas Orand
{"title":"混合特征学习算法的优化","authors":"M. Srihari, Zahra Gholipour, Reza Khoshkangini, Abbas Orand","doi":"10.1109/sais55783.2022.9833044","DOIUrl":null,"url":null,"abstract":"In recent years, machine learning (ML) algorithms have been used to minimize maintenance costs and identify problems early in the automotive sector. The determination of an asset’s residual useful life of a component at a specific time is known as “remaining useful life” (RUL). The extensive evolution of data makes it challenging to analyze and interpret high-level and valuable features from the data. The issue arises in all disciplines, and the automotive industry is no exception, given the large number of sensors to consider. Existing RUL research has not given much thought to the influence of high dimensionality data on component maintenance and deterioration. The fundamental purpose of feature selection (FS) is to select a subset of features from the data without compromising model performance. This work proposes a hybrid approach to the FS problem that combines Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO). When tested on public datasets, our results demonstrate a rise in regression accuracy and a reduction in the number of selected features.","PeriodicalId":228143,"journal":{"name":"2022 Swedish Artificial Intelligence Society Workshop (SAIS)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of the Hybrid Feature Learning Algorithm\",\"authors\":\"M. Srihari, Zahra Gholipour, Reza Khoshkangini, Abbas Orand\",\"doi\":\"10.1109/sais55783.2022.9833044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, machine learning (ML) algorithms have been used to minimize maintenance costs and identify problems early in the automotive sector. The determination of an asset’s residual useful life of a component at a specific time is known as “remaining useful life” (RUL). The extensive evolution of data makes it challenging to analyze and interpret high-level and valuable features from the data. The issue arises in all disciplines, and the automotive industry is no exception, given the large number of sensors to consider. Existing RUL research has not given much thought to the influence of high dimensionality data on component maintenance and deterioration. The fundamental purpose of feature selection (FS) is to select a subset of features from the data without compromising model performance. This work proposes a hybrid approach to the FS problem that combines Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO). When tested on public datasets, our results demonstrate a rise in regression accuracy and a reduction in the number of selected features.\",\"PeriodicalId\":228143,\"journal\":{\"name\":\"2022 Swedish Artificial Intelligence Society Workshop (SAIS)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Swedish Artificial Intelligence Society Workshop (SAIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/sais55783.2022.9833044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Swedish Artificial Intelligence Society Workshop (SAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/sais55783.2022.9833044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,机器学习(ML)算法已被用于最小化维护成本,并在汽车行业早期发现问题。确定资产组件在特定时间的剩余使用寿命称为“剩余使用寿命”(RUL)。数据的广泛演变使得从数据中分析和解释高级和有价值的特征变得具有挑战性。这个问题出现在所有学科中,汽车行业也不例外,因为需要考虑大量的传感器。现有的RUL研究并未充分考虑高维数据对部件维护和劣化的影响。特征选择(FS)的基本目的是在不影响模型性能的情况下从数据中选择特征子集。本文提出了一种结合蚁群优化(ACO)和粒子群优化(PSO)的混合方法来解决FS问题。当在公共数据集上进行测试时,我们的结果表明回归精度有所提高,所选特征的数量有所减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of the Hybrid Feature Learning Algorithm
In recent years, machine learning (ML) algorithms have been used to minimize maintenance costs and identify problems early in the automotive sector. The determination of an asset’s residual useful life of a component at a specific time is known as “remaining useful life” (RUL). The extensive evolution of data makes it challenging to analyze and interpret high-level and valuable features from the data. The issue arises in all disciplines, and the automotive industry is no exception, given the large number of sensors to consider. Existing RUL research has not given much thought to the influence of high dimensionality data on component maintenance and deterioration. The fundamental purpose of feature selection (FS) is to select a subset of features from the data without compromising model performance. This work proposes a hybrid approach to the FS problem that combines Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO). When tested on public datasets, our results demonstrate a rise in regression accuracy and a reduction in the number of selected features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信