{"title":"基于协方差描述符的低分辨率视频中人的外观再识别","authors":"J. Metzler","doi":"10.1109/AVSS.2012.12","DOIUrl":null,"url":null,"abstract":"The objective of human re-identification is to recognize a specific individual on different locations and to determine whether an individual has already appeared. This is especially in multi-camera networks with non-overlapping fields of view of interest. However, this is still an unsolved computer vision task due to several challenges, e.g. significant changes of appearance of humans as well as different illumination, camera parameters etc. In addition, for instance, in surveillance scenarios only low-resolution videos are usually available, so that biometric approaches may not be applied. This paper presents a whole-body appearance-based human re-identification approach for low-resolution videos. We propose a novel appearance model computed from several images of an individual. The model is based on means of covariance descriptors determined by spectral clustering techniques. The proposed approach is tested on a multi-camera data set of a typical surveillance scenario and compared to a color histogram based method.","PeriodicalId":275325,"journal":{"name":"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Appearance-Based Re-identification of Humans in Low-Resolution Videos Using Means of Covariance Descriptors\",\"authors\":\"J. Metzler\",\"doi\":\"10.1109/AVSS.2012.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of human re-identification is to recognize a specific individual on different locations and to determine whether an individual has already appeared. This is especially in multi-camera networks with non-overlapping fields of view of interest. However, this is still an unsolved computer vision task due to several challenges, e.g. significant changes of appearance of humans as well as different illumination, camera parameters etc. In addition, for instance, in surveillance scenarios only low-resolution videos are usually available, so that biometric approaches may not be applied. This paper presents a whole-body appearance-based human re-identification approach for low-resolution videos. We propose a novel appearance model computed from several images of an individual. The model is based on means of covariance descriptors determined by spectral clustering techniques. The proposed approach is tested on a multi-camera data set of a typical surveillance scenario and compared to a color histogram based method.\",\"PeriodicalId\":275325,\"journal\":{\"name\":\"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AVSS.2012.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2012.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Appearance-Based Re-identification of Humans in Low-Resolution Videos Using Means of Covariance Descriptors
The objective of human re-identification is to recognize a specific individual on different locations and to determine whether an individual has already appeared. This is especially in multi-camera networks with non-overlapping fields of view of interest. However, this is still an unsolved computer vision task due to several challenges, e.g. significant changes of appearance of humans as well as different illumination, camera parameters etc. In addition, for instance, in surveillance scenarios only low-resolution videos are usually available, so that biometric approaches may not be applied. This paper presents a whole-body appearance-based human re-identification approach for low-resolution videos. We propose a novel appearance model computed from several images of an individual. The model is based on means of covariance descriptors determined by spectral clustering techniques. The proposed approach is tested on a multi-camera data set of a typical surveillance scenario and compared to a color histogram based method.