机动目标跟踪的自适应卡尔曼滤波

G. Soysal, M. Efe
{"title":"机动目标跟踪的自适应卡尔曼滤波","authors":"G. Soysal, M. Efe","doi":"10.1109/SIU.2006.1659885","DOIUrl":null,"url":null,"abstract":"In this paper, an adaptive Kalman filter is presented. The proposed filter calculates the process noise covariance which determines the tracking ability of the Kalman filter at every update time. Thus, the filter becomes sensitive to variations in the the target motion. In the filter, process noise covariance is updated at every sampling interval according to a predetermined relationship between the innovation covariance of the Kalman filter and available data form the measurements. Then state estimation and state estimation covariance are updated using the new process noise covariance. Tracking performance of the proposed algorithm has been compared to the Interactive multiple model filter through simulations","PeriodicalId":415037,"journal":{"name":"2006 IEEE 14th Signal Processing and Communications Applications","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"An Adaptive Kalman Filter For Tracking Maneuvering Targets\",\"authors\":\"G. Soysal, M. Efe\",\"doi\":\"10.1109/SIU.2006.1659885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an adaptive Kalman filter is presented. The proposed filter calculates the process noise covariance which determines the tracking ability of the Kalman filter at every update time. Thus, the filter becomes sensitive to variations in the the target motion. In the filter, process noise covariance is updated at every sampling interval according to a predetermined relationship between the innovation covariance of the Kalman filter and available data form the measurements. Then state estimation and state estimation covariance are updated using the new process noise covariance. Tracking performance of the proposed algorithm has been compared to the Interactive multiple model filter through simulations\",\"PeriodicalId\":415037,\"journal\":{\"name\":\"2006 IEEE 14th Signal Processing and Communications Applications\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE 14th Signal Processing and Communications Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2006.1659885\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE 14th Signal Processing and Communications Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2006.1659885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文提出了一种自适应卡尔曼滤波器。该滤波器通过计算过程噪声协方差来决定卡尔曼滤波器在每次更新时的跟踪能力。因此,滤波器对目标运动的变化变得敏感。在滤波器中,根据卡尔曼滤波器的创新协方差与测量数据之间的预定关系,在每个采样间隔更新过程噪声协方差。然后利用新的过程噪声协方差对状态估计和状态估计协方差进行更新。通过仿真比较了该算法与交互式多模型滤波器的跟踪性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Adaptive Kalman Filter For Tracking Maneuvering Targets
In this paper, an adaptive Kalman filter is presented. The proposed filter calculates the process noise covariance which determines the tracking ability of the Kalman filter at every update time. Thus, the filter becomes sensitive to variations in the the target motion. In the filter, process noise covariance is updated at every sampling interval according to a predetermined relationship between the innovation covariance of the Kalman filter and available data form the measurements. Then state estimation and state estimation covariance are updated using the new process noise covariance. Tracking performance of the proposed algorithm has been compared to the Interactive multiple model filter through simulations
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信