交叉小波和奇异值分解在Covid-19和生物物理数据中的应用

Iftikhar U. Sikder, James J. Ribero
{"title":"交叉小波和奇异值分解在Covid-19和生物物理数据中的应用","authors":"Iftikhar U. Sikder, James J. Ribero","doi":"10.5121/csit.2022.120612","DOIUrl":null,"url":null,"abstract":"The paper examines the bivariate relationship between COVID-19 and temperature time series using Singular Value Decomposition (SVD) and continuous cross-wavelet analysis. The COVID-19 incidence data and the temperature data of the corresponding period were transformed using SVD into significant eigen-state vectors for each spatial unit. Wavelet transformation was performed to analyze and compare the frequency structure of the single and the bivariate time series. The result provides coherency measures in the ranges of time period for the corresponding spatial units. Additionally, wavelet power spectrum and paired wavelet coherence statistics and phase difference were estimated. The result suggests statistically significant coherency at various frequencies. It also indicates complex conjugate dynamic relationships in terms phases and phase differences.","PeriodicalId":201778,"journal":{"name":"Embedded Systems and Applications","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Cross-Wavelet and Singular Value Decomposition on Covid-19 and Bio-Physical Data\",\"authors\":\"Iftikhar U. Sikder, James J. Ribero\",\"doi\":\"10.5121/csit.2022.120612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper examines the bivariate relationship between COVID-19 and temperature time series using Singular Value Decomposition (SVD) and continuous cross-wavelet analysis. The COVID-19 incidence data and the temperature data of the corresponding period were transformed using SVD into significant eigen-state vectors for each spatial unit. Wavelet transformation was performed to analyze and compare the frequency structure of the single and the bivariate time series. The result provides coherency measures in the ranges of time period for the corresponding spatial units. Additionally, wavelet power spectrum and paired wavelet coherence statistics and phase difference were estimated. The result suggests statistically significant coherency at various frequencies. It also indicates complex conjugate dynamic relationships in terms phases and phase differences.\",\"PeriodicalId\":201778,\"journal\":{\"name\":\"Embedded Systems and Applications\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Embedded Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/csit.2022.120612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Embedded Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2022.120612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文采用奇异值分解(SVD)和连续交叉小波分析方法研究了COVID-19与温度时间序列的二元关系。利用奇异值分解(SVD)将疫情数据和同期气温数据转化为各空间单元的显著特征状态向量。利用小波变换对单变量和二元时间序列的频率结构进行分析和比较。结果提供了相应空间单元在时间范围内的相干度量。此外,对小波功率谱和配对小波相干统计量及相位差进行估计。结果表明,在不同频率下,相干性具有统计学意义。它还表明了相位和相位差的复杂共轭动态关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Cross-Wavelet and Singular Value Decomposition on Covid-19 and Bio-Physical Data
The paper examines the bivariate relationship between COVID-19 and temperature time series using Singular Value Decomposition (SVD) and continuous cross-wavelet analysis. The COVID-19 incidence data and the temperature data of the corresponding period were transformed using SVD into significant eigen-state vectors for each spatial unit. Wavelet transformation was performed to analyze and compare the frequency structure of the single and the bivariate time series. The result provides coherency measures in the ranges of time period for the corresponding spatial units. Additionally, wavelet power spectrum and paired wavelet coherence statistics and phase difference were estimated. The result suggests statistically significant coherency at various frequencies. It also indicates complex conjugate dynamic relationships in terms phases and phase differences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信