提高基于规则的NER系统的覆盖率

Emna Hkiri, Souheyl Mallat, M. Zrigui
{"title":"提高基于规则的NER系统的覆盖率","authors":"Emna Hkiri, Souheyl Mallat, M. Zrigui","doi":"10.1109/ICTA.2015.7426925","DOIUrl":null,"url":null,"abstract":"Named entity recognition (NER) is the problem of identifying (locating and categorizing) atomic entities in a given text that fall into predefined categories or classes. In this work, we developed a bilingual Arabic-English lexicon of named entities (NE) to improve the performance of Arabic rule-based systems. To reach our goal, we followed different steps starting by the pre-editing of the DBpedia linked data entities and the parallel corpus and then applying our automatic model for detection, extraction and translation of Arabic-English Named Entities. Our approach is fully automatic and hybrid, it combines linguistic and statistical methods.","PeriodicalId":375443,"journal":{"name":"2015 5th International Conference on Information & Communication Technology and Accessibility (ICTA)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Improving coverage of rule based NER systems\",\"authors\":\"Emna Hkiri, Souheyl Mallat, M. Zrigui\",\"doi\":\"10.1109/ICTA.2015.7426925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Named entity recognition (NER) is the problem of identifying (locating and categorizing) atomic entities in a given text that fall into predefined categories or classes. In this work, we developed a bilingual Arabic-English lexicon of named entities (NE) to improve the performance of Arabic rule-based systems. To reach our goal, we followed different steps starting by the pre-editing of the DBpedia linked data entities and the parallel corpus and then applying our automatic model for detection, extraction and translation of Arabic-English Named Entities. Our approach is fully automatic and hybrid, it combines linguistic and statistical methods.\",\"PeriodicalId\":375443,\"journal\":{\"name\":\"2015 5th International Conference on Information & Communication Technology and Accessibility (ICTA)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 5th International Conference on Information & Communication Technology and Accessibility (ICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTA.2015.7426925\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 5th International Conference on Information & Communication Technology and Accessibility (ICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTA.2015.7426925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

命名实体识别(NER)是在给定文本中识别(定位和分类)属于预定义类别或类的原子实体的问题。在这项工作中,我们开发了一个双语的阿拉伯-英语命名实体词典(NE),以提高基于阿拉伯语规则的系统的性能。为了达到我们的目标,我们遵循了不同的步骤,从预先编辑DBpedia链接的数据实体和并行语料库开始,然后应用我们的自动模型来检测、提取和翻译阿拉伯-英语命名实体。我们的方法是全自动和混合的,它结合了语言和统计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving coverage of rule based NER systems
Named entity recognition (NER) is the problem of identifying (locating and categorizing) atomic entities in a given text that fall into predefined categories or classes. In this work, we developed a bilingual Arabic-English lexicon of named entities (NE) to improve the performance of Arabic rule-based systems. To reach our goal, we followed different steps starting by the pre-editing of the DBpedia linked data entities and the parallel corpus and then applying our automatic model for detection, extraction and translation of Arabic-English Named Entities. Our approach is fully automatic and hybrid, it combines linguistic and statistical methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信