机器学习算法检测假新闻的比较分析

Sai Rama Krishna Indarapu, Jahnavi Komalla, Dheeraj Reddy Inugala, Gowtham Reddy Kota, Anjali Sanam
{"title":"机器学习算法检测假新闻的比较分析","authors":"Sai Rama Krishna Indarapu, Jahnavi Komalla, Dheeraj Reddy Inugala, Gowtham Reddy Kota, Anjali Sanam","doi":"10.1109/ICSPC51351.2021.9451690","DOIUrl":null,"url":null,"abstract":"Fake news has immense impact in our modern society. The widespread dissemination of false news has the potential to have highly damaging consequences for both individuals and society. As the readers come across many fake news when they come across a real news, they believe that it could be another fake news. The aim of this project is to perform a comparative analysis of three algorithms (Multinomial Naive Bayes, Passive Aggressive Classifier and Decision Tree Classifier) using Natural Language Processing techniques to develop a solution that users can use to identify false or misleading information. As Passive Aggressive Classifier gave the best results, prediction is done using this classifier.","PeriodicalId":182885,"journal":{"name":"2021 3rd International Conference on Signal Processing and Communication (ICPSC)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Comparative analysis of machine learning algorithms to detect fake news\",\"authors\":\"Sai Rama Krishna Indarapu, Jahnavi Komalla, Dheeraj Reddy Inugala, Gowtham Reddy Kota, Anjali Sanam\",\"doi\":\"10.1109/ICSPC51351.2021.9451690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fake news has immense impact in our modern society. The widespread dissemination of false news has the potential to have highly damaging consequences for both individuals and society. As the readers come across many fake news when they come across a real news, they believe that it could be another fake news. The aim of this project is to perform a comparative analysis of three algorithms (Multinomial Naive Bayes, Passive Aggressive Classifier and Decision Tree Classifier) using Natural Language Processing techniques to develop a solution that users can use to identify false or misleading information. As Passive Aggressive Classifier gave the best results, prediction is done using this classifier.\",\"PeriodicalId\":182885,\"journal\":{\"name\":\"2021 3rd International Conference on Signal Processing and Communication (ICPSC)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 3rd International Conference on Signal Processing and Communication (ICPSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSPC51351.2021.9451690\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 3rd International Conference on Signal Processing and Communication (ICPSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPC51351.2021.9451690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

假新闻对我们的现代社会有着巨大的影响。虚假新闻的广泛传播有可能对个人和社会造成极具破坏性的后果。当读者看到一条真实的新闻时,他们会遇到很多假新闻,他们认为这可能是另一条假新闻。该项目的目的是使用自然语言处理技术对三种算法(多项朴素贝叶斯,被动攻击分类器和决策树分类器)进行比较分析,以开发用户可以用来识别虚假或误导性信息的解决方案。由于被动攻击分类器给出了最好的预测结果,因此使用该分类器进行预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative analysis of machine learning algorithms to detect fake news
Fake news has immense impact in our modern society. The widespread dissemination of false news has the potential to have highly damaging consequences for both individuals and society. As the readers come across many fake news when they come across a real news, they believe that it could be another fake news. The aim of this project is to perform a comparative analysis of three algorithms (Multinomial Naive Bayes, Passive Aggressive Classifier and Decision Tree Classifier) using Natural Language Processing techniques to develop a solution that users can use to identify false or misleading information. As Passive Aggressive Classifier gave the best results, prediction is done using this classifier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信