基于提议的点监督实例分割

I. Laradji, Negar Rostamzadeh, Pedro H. O. Pinheiro, David Vázquez, Mark W. Schmidt
{"title":"基于提议的点监督实例分割","authors":"I. Laradji, Negar Rostamzadeh, Pedro H. O. Pinheiro, David Vázquez, Mark W. Schmidt","doi":"10.1109/ICIP40778.2020.9190782","DOIUrl":null,"url":null,"abstract":"Instance segmentation methods often require costly per-pixel labels. We propose a method called WISE-Net that only requires point-level annotations. During training, the model only has access to a single pixel label per object, yet the task is to output full segmentation masks. To address this challenge, we construct a network with two branches: (1) a 10-calization network (L-Net) that predicts the location of each object; and (2) an embedding network (E-Net) that learns an embedding space where pixels of the same object are close. The segmentation masks for the located objects are obtained by grouping pixels with similar embeddings. We evaluate our approach on PASCAL VOC, COCO, KITTI and CityScapes datasets. The experiments show that our method (1) obtains competitive results compared to fully-supervised methods in certain scenarios; (2) outperforms fully-and weakly-supervised methods with a fixed annotation budget; and (3) establishes a first strong baseline for instance segmentation with point-level supervision.","PeriodicalId":405734,"journal":{"name":"2020 IEEE International Conference on Image Processing (ICIP)","volume":"360 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Proposal-Based Instance Segmentation With Point Supervision\",\"authors\":\"I. Laradji, Negar Rostamzadeh, Pedro H. O. Pinheiro, David Vázquez, Mark W. Schmidt\",\"doi\":\"10.1109/ICIP40778.2020.9190782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Instance segmentation methods often require costly per-pixel labels. We propose a method called WISE-Net that only requires point-level annotations. During training, the model only has access to a single pixel label per object, yet the task is to output full segmentation masks. To address this challenge, we construct a network with two branches: (1) a 10-calization network (L-Net) that predicts the location of each object; and (2) an embedding network (E-Net) that learns an embedding space where pixels of the same object are close. The segmentation masks for the located objects are obtained by grouping pixels with similar embeddings. We evaluate our approach on PASCAL VOC, COCO, KITTI and CityScapes datasets. The experiments show that our method (1) obtains competitive results compared to fully-supervised methods in certain scenarios; (2) outperforms fully-and weakly-supervised methods with a fixed annotation budget; and (3) establishes a first strong baseline for instance segmentation with point-level supervision.\",\"PeriodicalId\":405734,\"journal\":{\"name\":\"2020 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"360 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP40778.2020.9190782\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP40778.2020.9190782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

实例分割方法通常需要昂贵的逐像素标签。我们提出了一种叫做WISE-Net的方法,它只需要点级注释。在训练过程中,模型只能访问每个对象的单个像素标签,但任务是输出完整的分割掩码。为了解决这一挑战,我们构建了一个具有两个分支的网络:(1)一个预测每个对象位置的10-calization网络(L-Net);(2)学习同一物体像素接近的嵌入空间的嵌入网络(E-Net)。通过对具有相似嵌入的像素进行分组,获得定位对象的分割掩码。我们在PASCAL VOC、COCO、KITTI和cityscape数据集上评估了我们的方法。实验表明,与全监督方法相比,我们的方法(1)在某些场景下获得了具有竞争力的结果;(2)在固定标注预算下优于全监督和弱监督方法;(3)通过点级监督为实例分割建立第一个强基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proposal-Based Instance Segmentation With Point Supervision
Instance segmentation methods often require costly per-pixel labels. We propose a method called WISE-Net that only requires point-level annotations. During training, the model only has access to a single pixel label per object, yet the task is to output full segmentation masks. To address this challenge, we construct a network with two branches: (1) a 10-calization network (L-Net) that predicts the location of each object; and (2) an embedding network (E-Net) that learns an embedding space where pixels of the same object are close. The segmentation masks for the located objects are obtained by grouping pixels with similar embeddings. We evaluate our approach on PASCAL VOC, COCO, KITTI and CityScapes datasets. The experiments show that our method (1) obtains competitive results compared to fully-supervised methods in certain scenarios; (2) outperforms fully-and weakly-supervised methods with a fixed annotation budget; and (3) establishes a first strong baseline for instance segmentation with point-level supervision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信