基于lp的个性化保留价格逼近

M. Derakhshan, Negin Golrezaei, R. Leme
{"title":"基于lp的个性化保留价格逼近","authors":"M. Derakhshan, Negin Golrezaei, R. Leme","doi":"10.1145/3328526.3329594","DOIUrl":null,"url":null,"abstract":"We study the problem of computing personalized reserve prices in eager second price auctions without having any assumption on valuation distributions. Here, the input is a dataset that contains the submitted bids of n buyers in a set of auctions and the goal is to return personalized reserve prices r that maximize the revenue earned on these auctions by running eager second price auctions with reserve r. We present a novel LP formulation to this problem and a rounding procedure which achieves a (1+2(√2-1)e√2-2)-1≅0.684-approximation. This improves over the 1/2-approximation Algorithm due to Roughgarden and Wang. We show that our analysis is tight for this rounding procedure. We also bound the integrality gap of the LP, which bounds the performance of any algorithm based on this LP.","PeriodicalId":416173,"journal":{"name":"Proceedings of the 2019 ACM Conference on Economics and Computation","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"LP-based Approximation for Personalized Reserve Prices\",\"authors\":\"M. Derakhshan, Negin Golrezaei, R. Leme\",\"doi\":\"10.1145/3328526.3329594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the problem of computing personalized reserve prices in eager second price auctions without having any assumption on valuation distributions. Here, the input is a dataset that contains the submitted bids of n buyers in a set of auctions and the goal is to return personalized reserve prices r that maximize the revenue earned on these auctions by running eager second price auctions with reserve r. We present a novel LP formulation to this problem and a rounding procedure which achieves a (1+2(√2-1)e√2-2)-1≅0.684-approximation. This improves over the 1/2-approximation Algorithm due to Roughgarden and Wang. We show that our analysis is tight for this rounding procedure. We also bound the integrality gap of the LP, which bounds the performance of any algorithm based on this LP.\",\"PeriodicalId\":416173,\"journal\":{\"name\":\"Proceedings of the 2019 ACM Conference on Economics and Computation\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 ACM Conference on Economics and Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3328526.3329594\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 ACM Conference on Economics and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3328526.3329594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文研究了在没有估价分布假设的情况下,急切第二价格拍卖中个性化保留价格的计算问题。在这里,输入是一个包含n个买家在一组拍卖中提交的出价的数据集,目标是返回个性化的保留价格r,通过运行具有保留r的急于第二价格拍卖来最大化这些拍卖所获得的收入。我们提出了一个新的LP公式和一个四舍五入的过程来实现(1+2(√2-1)e√2-2)-1 = 0.684近似值。这比Roughgarden和Wang提出的1/2近似算法有所改进。我们证明了我们的分析对于这个舍入过程是严格的。我们还限定了LP的完整性间隙,从而限定了基于该LP的任何算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LP-based Approximation for Personalized Reserve Prices
We study the problem of computing personalized reserve prices in eager second price auctions without having any assumption on valuation distributions. Here, the input is a dataset that contains the submitted bids of n buyers in a set of auctions and the goal is to return personalized reserve prices r that maximize the revenue earned on these auctions by running eager second price auctions with reserve r. We present a novel LP formulation to this problem and a rounding procedure which achieves a (1+2(√2-1)e√2-2)-1≅0.684-approximation. This improves over the 1/2-approximation Algorithm due to Roughgarden and Wang. We show that our analysis is tight for this rounding procedure. We also bound the integrality gap of the LP, which bounds the performance of any algorithm based on this LP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信