{"title":"基于lp的个性化保留价格逼近","authors":"M. Derakhshan, Negin Golrezaei, R. Leme","doi":"10.1145/3328526.3329594","DOIUrl":null,"url":null,"abstract":"We study the problem of computing personalized reserve prices in eager second price auctions without having any assumption on valuation distributions. Here, the input is a dataset that contains the submitted bids of n buyers in a set of auctions and the goal is to return personalized reserve prices r that maximize the revenue earned on these auctions by running eager second price auctions with reserve r. We present a novel LP formulation to this problem and a rounding procedure which achieves a (1+2(√2-1)e√2-2)-1≅0.684-approximation. This improves over the 1/2-approximation Algorithm due to Roughgarden and Wang. We show that our analysis is tight for this rounding procedure. We also bound the integrality gap of the LP, which bounds the performance of any algorithm based on this LP.","PeriodicalId":416173,"journal":{"name":"Proceedings of the 2019 ACM Conference on Economics and Computation","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"LP-based Approximation for Personalized Reserve Prices\",\"authors\":\"M. Derakhshan, Negin Golrezaei, R. Leme\",\"doi\":\"10.1145/3328526.3329594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the problem of computing personalized reserve prices in eager second price auctions without having any assumption on valuation distributions. Here, the input is a dataset that contains the submitted bids of n buyers in a set of auctions and the goal is to return personalized reserve prices r that maximize the revenue earned on these auctions by running eager second price auctions with reserve r. We present a novel LP formulation to this problem and a rounding procedure which achieves a (1+2(√2-1)e√2-2)-1≅0.684-approximation. This improves over the 1/2-approximation Algorithm due to Roughgarden and Wang. We show that our analysis is tight for this rounding procedure. We also bound the integrality gap of the LP, which bounds the performance of any algorithm based on this LP.\",\"PeriodicalId\":416173,\"journal\":{\"name\":\"Proceedings of the 2019 ACM Conference on Economics and Computation\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 ACM Conference on Economics and Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3328526.3329594\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 ACM Conference on Economics and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3328526.3329594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
LP-based Approximation for Personalized Reserve Prices
We study the problem of computing personalized reserve prices in eager second price auctions without having any assumption on valuation distributions. Here, the input is a dataset that contains the submitted bids of n buyers in a set of auctions and the goal is to return personalized reserve prices r that maximize the revenue earned on these auctions by running eager second price auctions with reserve r. We present a novel LP formulation to this problem and a rounding procedure which achieves a (1+2(√2-1)e√2-2)-1≅0.684-approximation. This improves over the 1/2-approximation Algorithm due to Roughgarden and Wang. We show that our analysis is tight for this rounding procedure. We also bound the integrality gap of the LP, which bounds the performance of any algorithm based on this LP.