有界区间上Schrödinger算子的极大行列式

C. Aldana, Jean-Baptiste Caillau, P. Freitas
{"title":"有界区间上Schrödinger算子的极大行列式","authors":"C. Aldana, Jean-Baptiste Caillau, P. Freitas","doi":"10.5802/jep.128","DOIUrl":null,"url":null,"abstract":"We consider the problem of finding extremal potentials for the functional determinant of a one-dimensional Schrodinger operator defined on a bounded interval with Dirichlet boundary conditions under an $L^q$-norm restriction ($q\\geq 1$). This is done by first extending the definition of the functional determinant to the case of $L^q$ potentials and showing the resulting problem to be equivalent to a problem in optimal control, which we believe to be of independent interest. We prove existence, uniqueness and describe some basic properties of solutions to this problem for all $q\\geq 1$, providing a complete characterization of extremal potentials in the case where $q$ is one (a pulse) and two (Weierstrass's $\\wp$ function).","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximal determinants of Schrödinger operators on bounded intervals\",\"authors\":\"C. Aldana, Jean-Baptiste Caillau, P. Freitas\",\"doi\":\"10.5802/jep.128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of finding extremal potentials for the functional determinant of a one-dimensional Schrodinger operator defined on a bounded interval with Dirichlet boundary conditions under an $L^q$-norm restriction ($q\\\\geq 1$). This is done by first extending the definition of the functional determinant to the case of $L^q$ potentials and showing the resulting problem to be equivalent to a problem in optimal control, which we believe to be of independent interest. We prove existence, uniqueness and describe some basic properties of solutions to this problem for all $q\\\\geq 1$, providing a complete characterization of extremal potentials in the case where $q$ is one (a pulse) and two (Weierstrass's $\\\\wp$ function).\",\"PeriodicalId\":106406,\"journal\":{\"name\":\"Journal de l’École polytechnique — Mathématiques\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de l’École polytechnique — Mathématiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/jep.128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/jep.128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑在$L^q$ -范数限制($q\geq 1$)下,在Dirichlet边界条件下定义在有界区间上的一维薛定谔算子的泛函行列式的极值势问题。这是通过首先将功能行列式的定义扩展到$L^q$势的情况,并显示所产生的问题等同于最优控制问题来完成的,我们认为这是独立的兴趣。我们证明了所有$q\geq 1$解的存在唯一性,并描述了该问题解的一些基本性质,给出了$q$为1(脉冲)和2 (Weierstrass的$\wp$函数)的极值势的完整表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximal determinants of Schrödinger operators on bounded intervals
We consider the problem of finding extremal potentials for the functional determinant of a one-dimensional Schrodinger operator defined on a bounded interval with Dirichlet boundary conditions under an $L^q$-norm restriction ($q\geq 1$). This is done by first extending the definition of the functional determinant to the case of $L^q$ potentials and showing the resulting problem to be equivalent to a problem in optimal control, which we believe to be of independent interest. We prove existence, uniqueness and describe some basic properties of solutions to this problem for all $q\geq 1$, providing a complete characterization of extremal potentials in the case where $q$ is one (a pulse) and two (Weierstrass's $\wp$ function).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信