基于半监督聚类的历史打字文档严重退化字符识别新框架

S. Pletschacher, Jianying Hu, A. Antonacopoulos
{"title":"基于半监督聚类的历史打字文档严重退化字符识别新框架","authors":"S. Pletschacher, Jianying Hu, A. Antonacopoulos","doi":"10.1109/ICDAR.2009.267","DOIUrl":null,"url":null,"abstract":"This paper presents a new semi-supervised clustering framework to the recognition of heavily degraded characters in historical typewritten documents, where off-the-shelf OCR typically fails. The constraints are generated using typographical (collection-independent) domain knowledge and are used to guide both sample (glyph set) partitioning and metric learning. Experimental results using simple features provide encouraging evidence that this approach can lead to significantly improved clustering results compared to simple K-Means clustering, as well as to clustering using a state-of-the art OCR engine.","PeriodicalId":433762,"journal":{"name":"2009 10th International Conference on Document Analysis and Recognition","volume":"4 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A New Framework for Recognition of Heavily Degraded Characters in Historical Typewritten Documents Based on Semi-Supervised Clustering\",\"authors\":\"S. Pletschacher, Jianying Hu, A. Antonacopoulos\",\"doi\":\"10.1109/ICDAR.2009.267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new semi-supervised clustering framework to the recognition of heavily degraded characters in historical typewritten documents, where off-the-shelf OCR typically fails. The constraints are generated using typographical (collection-independent) domain knowledge and are used to guide both sample (glyph set) partitioning and metric learning. Experimental results using simple features provide encouraging evidence that this approach can lead to significantly improved clustering results compared to simple K-Means clustering, as well as to clustering using a state-of-the art OCR engine.\",\"PeriodicalId\":433762,\"journal\":{\"name\":\"2009 10th International Conference on Document Analysis and Recognition\",\"volume\":\"4 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 10th International Conference on Document Analysis and Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2009.267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 10th International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2009.267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文提出了一种新的半监督聚类框架,用于识别历史打字文档中的严重退化字符,而现有OCR通常无法识别这些字符。约束是使用排版(与集合无关)领域知识生成的,并用于指导样本(字形集)划分和度量学习。使用简单特征的实验结果提供了令人鼓舞的证据,表明与简单的K-Means聚类以及使用最先进的OCR引擎聚类相比,这种方法可以显著改善聚类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Framework for Recognition of Heavily Degraded Characters in Historical Typewritten Documents Based on Semi-Supervised Clustering
This paper presents a new semi-supervised clustering framework to the recognition of heavily degraded characters in historical typewritten documents, where off-the-shelf OCR typically fails. The constraints are generated using typographical (collection-independent) domain knowledge and are used to guide both sample (glyph set) partitioning and metric learning. Experimental results using simple features provide encouraging evidence that this approach can lead to significantly improved clustering results compared to simple K-Means clustering, as well as to clustering using a state-of-the art OCR engine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信