基于神经网络的场景文本过分割识别

Xin He, Yi-Chao Wu, Kai Chen, Fei Yin, Cheng-Lin Liu
{"title":"基于神经网络的场景文本过分割识别","authors":"Xin He, Yi-Chao Wu, Kai Chen, Fei Yin, Cheng-Lin Liu","doi":"10.1109/ACPR.2015.7486596","DOIUrl":null,"url":null,"abstract":"Over-segmentation is often used in text recognition to generate candidate characters. In this paper, we propose a neural network-based over-segmentation method for cropped scene text recognition. On binarized text line image, a segmentation window slides over each connected component, and a neural network is used to classify whether the window locates a segmentation point or not. We evaluate several feature representations for window classification and combine sliding window-based segmentation with shape-based splitting. Experimental results on two benchmark datasets demonstrate the superiority and effectiveness of our method in respect of segmentation point detection and word recognition.","PeriodicalId":240902,"journal":{"name":"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)","volume":"18 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Neural network based over-segmentation for scene text recognition\",\"authors\":\"Xin He, Yi-Chao Wu, Kai Chen, Fei Yin, Cheng-Lin Liu\",\"doi\":\"10.1109/ACPR.2015.7486596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over-segmentation is often used in text recognition to generate candidate characters. In this paper, we propose a neural network-based over-segmentation method for cropped scene text recognition. On binarized text line image, a segmentation window slides over each connected component, and a neural network is used to classify whether the window locates a segmentation point or not. We evaluate several feature representations for window classification and combine sliding window-based segmentation with shape-based splitting. Experimental results on two benchmark datasets demonstrate the superiority and effectiveness of our method in respect of segmentation point detection and word recognition.\",\"PeriodicalId\":240902,\"journal\":{\"name\":\"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)\",\"volume\":\"18 12\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACPR.2015.7486596\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2015.7486596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

过度分割是文本识别中常用的一种生成候选字符的方法。本文提出了一种基于神经网络的裁剪场景文本识别过分割方法。在二值化的文本行图像上,分割窗口在每个连接的组件上滑动,并使用神经网络对窗口是否定位到分割点进行分类。我们评估了几种用于窗口分类的特征表示,并将基于滑动窗口的分割与基于形状的分割相结合。在两个基准数据集上的实验结果表明了该方法在切分点检测和词识别方面的优越性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural network based over-segmentation for scene text recognition
Over-segmentation is often used in text recognition to generate candidate characters. In this paper, we propose a neural network-based over-segmentation method for cropped scene text recognition. On binarized text line image, a segmentation window slides over each connected component, and a neural network is used to classify whether the window locates a segmentation point or not. We evaluate several feature representations for window classification and combine sliding window-based segmentation with shape-based splitting. Experimental results on two benchmark datasets demonstrate the superiority and effectiveness of our method in respect of segmentation point detection and word recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信