“我能为你做些什么?”——寻求技术帮助的口头询问

ACM SE '10 Pub Date : 2010-04-15 DOI:10.1145/1900008.1900068
D. Wilson, Aqueasha M. Martin, J. Gilbert
{"title":"“我能为你做些什么?”——寻求技术帮助的口头询问","authors":"D. Wilson, Aqueasha M. Martin, J. Gilbert","doi":"10.1145/1900008.1900068","DOIUrl":null,"url":null,"abstract":"Spoken dialog systems, including interactive assistants, have emerged as a viable option for presenting technical communication. Thus has contributed to interests in improving the effectiveness and design of such systems through natural language. Traditional methods of natural language processing include parts-of-speech tagging, syntactic parsing, and statistical models. This paper introduces a new conversational question answering methodology, Answer First (A1) that bypasses traditional methods and removes the need for preprocessing of queries.","PeriodicalId":333104,"journal":{"name":"ACM SE '10","volume":"29 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"'How may I help you'-spoken queries for technical assistance\",\"authors\":\"D. Wilson, Aqueasha M. Martin, J. Gilbert\",\"doi\":\"10.1145/1900008.1900068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spoken dialog systems, including interactive assistants, have emerged as a viable option for presenting technical communication. Thus has contributed to interests in improving the effectiveness and design of such systems through natural language. Traditional methods of natural language processing include parts-of-speech tagging, syntactic parsing, and statistical models. This paper introduces a new conversational question answering methodology, Answer First (A1) that bypasses traditional methods and removes the need for preprocessing of queries.\",\"PeriodicalId\":333104,\"journal\":{\"name\":\"ACM SE '10\",\"volume\":\"29 11\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SE '10\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1900008.1900068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SE '10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1900008.1900068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

语音对话系统,包括交互式助手,已经成为技术交流的可行选择。因此,人们对通过自然语言来提高这种系统的有效性和设计感兴趣。传统的自然语言处理方法包括词性标注、句法分析和统计模型。本文介绍了一种新的会话问答方法,即回答优先(A1),它绕过了传统的方法,消除了对查询预处理的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
'How may I help you'-spoken queries for technical assistance
Spoken dialog systems, including interactive assistants, have emerged as a viable option for presenting technical communication. Thus has contributed to interests in improving the effectiveness and design of such systems through natural language. Traditional methods of natural language processing include parts-of-speech tagging, syntactic parsing, and statistical models. This paper introduces a new conversational question answering methodology, Answer First (A1) that bypasses traditional methods and removes the need for preprocessing of queries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信