{"title":"趋势预测研究评价数据集的构建","authors":"Shogo Matsuno, Sakae Mizuki, Takeshi Sakaki","doi":"10.1609/icwsm.v17i1.22212","DOIUrl":null,"url":null,"abstract":"In this study, we discuss issues in the traditional evaluation norms of trend forecasts, outline a suitable evaluation method, propose an evaluation dataset construction procedure, and publish Trend Dataset: the dataset we have created. As trend predictions often yield economic benefits, trend forecasting studies have been widely conducted. However, a consistent and systematic evaluation protocol has yet to be adopted. We consider that the desired evaluation method would address the performance of predicting which entity will trend, when a trend occurs, and how much it will trend based on a reliable indicator of the general public's recognition as a gold standard. Accordingly, we propose a dataset construction method that includes annotations for trending status (trending or non-trending), degree of trending (how well it is recognized), and the trend period corresponding to a surge in recognition rate. The proposed method uses questionnaire-based recognition rates interpolated using Internet search volume, enabling trend period annotation on a weekly timescale. The main novelty is that we survey when the respondents recognize the entities that are highly likely to have trended and those that haven't. This procedure enables a balanced collection of both trending and non-trending entities. We constructed the dataset and verified its quality. We confirmed that the interests of entities estimated using Wikipedia information enables the efficient collection of trending entities a priori. We also confirmed that the Internet search volume agrees with public recognition rate among trending entities.","PeriodicalId":175641,"journal":{"name":"International Conference on Web and Social Media","volume":"248 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of Evaluation Datasets for Trend Forecasting Studies\",\"authors\":\"Shogo Matsuno, Sakae Mizuki, Takeshi Sakaki\",\"doi\":\"10.1609/icwsm.v17i1.22212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we discuss issues in the traditional evaluation norms of trend forecasts, outline a suitable evaluation method, propose an evaluation dataset construction procedure, and publish Trend Dataset: the dataset we have created. As trend predictions often yield economic benefits, trend forecasting studies have been widely conducted. However, a consistent and systematic evaluation protocol has yet to be adopted. We consider that the desired evaluation method would address the performance of predicting which entity will trend, when a trend occurs, and how much it will trend based on a reliable indicator of the general public's recognition as a gold standard. Accordingly, we propose a dataset construction method that includes annotations for trending status (trending or non-trending), degree of trending (how well it is recognized), and the trend period corresponding to a surge in recognition rate. The proposed method uses questionnaire-based recognition rates interpolated using Internet search volume, enabling trend period annotation on a weekly timescale. The main novelty is that we survey when the respondents recognize the entities that are highly likely to have trended and those that haven't. This procedure enables a balanced collection of both trending and non-trending entities. We constructed the dataset and verified its quality. We confirmed that the interests of entities estimated using Wikipedia information enables the efficient collection of trending entities a priori. We also confirmed that the Internet search volume agrees with public recognition rate among trending entities.\",\"PeriodicalId\":175641,\"journal\":{\"name\":\"International Conference on Web and Social Media\",\"volume\":\"248 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Web and Social Media\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/icwsm.v17i1.22212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Web and Social Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/icwsm.v17i1.22212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Construction of Evaluation Datasets for Trend Forecasting Studies
In this study, we discuss issues in the traditional evaluation norms of trend forecasts, outline a suitable evaluation method, propose an evaluation dataset construction procedure, and publish Trend Dataset: the dataset we have created. As trend predictions often yield economic benefits, trend forecasting studies have been widely conducted. However, a consistent and systematic evaluation protocol has yet to be adopted. We consider that the desired evaluation method would address the performance of predicting which entity will trend, when a trend occurs, and how much it will trend based on a reliable indicator of the general public's recognition as a gold standard. Accordingly, we propose a dataset construction method that includes annotations for trending status (trending or non-trending), degree of trending (how well it is recognized), and the trend period corresponding to a surge in recognition rate. The proposed method uses questionnaire-based recognition rates interpolated using Internet search volume, enabling trend period annotation on a weekly timescale. The main novelty is that we survey when the respondents recognize the entities that are highly likely to have trended and those that haven't. This procedure enables a balanced collection of both trending and non-trending entities. We constructed the dataset and verified its quality. We confirmed that the interests of entities estimated using Wikipedia information enables the efficient collection of trending entities a priori. We also confirmed that the Internet search volume agrees with public recognition rate among trending entities.