利用生物地理学和灰狼优化技术求解OPF问题

Kingsuk Majumdar, Puja Das, P. Roy, Subrata Banerjee
{"title":"利用生物地理学和灰狼优化技术求解OPF问题","authors":"Kingsuk Majumdar, Puja Das, P. Roy, Subrata Banerjee","doi":"10.4018/IJEOE.2017070103","DOIUrl":null,"url":null,"abstract":"Thispaperpresentsbiogeography-basedoptimization(BBO)andgreywolfOptimization(GWO)for solvingthemulti-constrainedoptimalpowerflow(OPF)problemsinthepowersystem.Inthispaper, theproposedalgorithmshavebeentestedin9-bussystemundervariousconditionsalongwithIEEE 30bustestsystem.Acomparisonofsimulationresultsrevealsoptimizationefficacyoftheproposed schemeoverevolutionaryprogramming(EP),geneticalgorithm(GA),mixed-integerparticleswarm optimization(MIPSO)fortheglobaloptimizationofmulti-constraintOPFproblems.Itisobserved thatGWOisfarbetterincomparisontootherlistedoptimizationtechniquesandcanbeusedfor aforesaidproblemswithhighefficiency. KEyWORdS Biogeography Based Optimization, Grey Wolf Optimization, Migration, Mutation, Optimal Power Flow","PeriodicalId":246250,"journal":{"name":"Int. J. Energy Optim. Eng.","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Solving OPF Problems using Biogeography Based and Grey Wolf Optimization Techniques\",\"authors\":\"Kingsuk Majumdar, Puja Das, P. Roy, Subrata Banerjee\",\"doi\":\"10.4018/IJEOE.2017070103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thispaperpresentsbiogeography-basedoptimization(BBO)andgreywolfOptimization(GWO)for solvingthemulti-constrainedoptimalpowerflow(OPF)problemsinthepowersystem.Inthispaper, theproposedalgorithmshavebeentestedin9-bussystemundervariousconditionsalongwithIEEE 30bustestsystem.Acomparisonofsimulationresultsrevealsoptimizationefficacyoftheproposed schemeoverevolutionaryprogramming(EP),geneticalgorithm(GA),mixed-integerparticleswarm optimization(MIPSO)fortheglobaloptimizationofmulti-constraintOPFproblems.Itisobserved thatGWOisfarbetterincomparisontootherlistedoptimizationtechniquesandcanbeusedfor aforesaidproblemswithhighefficiency. KEyWORdS Biogeography Based Optimization, Grey Wolf Optimization, Migration, Mutation, Optimal Power Flow\",\"PeriodicalId\":246250,\"journal\":{\"name\":\"Int. J. Energy Optim. Eng.\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Energy Optim. Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJEOE.2017070103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Energy Optim. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJEOE.2017070103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

Thispaperpresentsbiogeography-basedoptimization(BBO)andgreywolfOptimization(GWO)for solvingthemulti-constrainedoptimalpowerflow(OPF)problemsinthepowersystem。Inthispaper, theproposedalgorithmshavebeentestedin9-bussystemundervariousconditionsalongwithIEEE 30bustestsystem。Acomparisonofsimulationresultsrevealsoptimizationefficacyoftheproposed schemeoverevolutionaryprogramming(EP),geneticalgorithm(GA),mixed-integerparticleswarm optimation_ (MIPSO)fortheglobaloptimizationofmulti-constraintOPFproblems。Itisobserved thatGWOisfarbetterincomparisontootherlistedoptimizationtechniquesandcanbeusedfor aforesaidproblemswithhighefficiency。关键词:基于生物地理学的优化,灰狼优化,迁移,突变,最优潮流
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solving OPF Problems using Biogeography Based and Grey Wolf Optimization Techniques
Thispaperpresentsbiogeography-basedoptimization(BBO)andgreywolfOptimization(GWO)for solvingthemulti-constrainedoptimalpowerflow(OPF)problemsinthepowersystem.Inthispaper, theproposedalgorithmshavebeentestedin9-bussystemundervariousconditionsalongwithIEEE 30bustestsystem.Acomparisonofsimulationresultsrevealsoptimizationefficacyoftheproposed schemeoverevolutionaryprogramming(EP),geneticalgorithm(GA),mixed-integerparticleswarm optimization(MIPSO)fortheglobaloptimizationofmulti-constraintOPFproblems.Itisobserved thatGWOisfarbetterincomparisontootherlistedoptimizationtechniquesandcanbeusedfor aforesaidproblemswithhighefficiency. KEyWORdS Biogeography Based Optimization, Grey Wolf Optimization, Migration, Mutation, Optimal Power Flow
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信