{"title":"基于高斯后验图的分段DTW的无监督语音关键字识别","authors":"Yaodong Zhang, James R. Glass","doi":"10.1109/ASRU.2009.5372931","DOIUrl":null,"url":null,"abstract":"In this paper, we present an unsupervised learning framework to address the problem of detecting spoken keywords. Without any transcription information, a Gaussian Mixture Model is trained to label speech frames with a Gaussian posteriorgram. Given one or more spoken examples of a keyword, we use segmental dynamic time warping to compare the Gaussian posteriorgrams between keyword samples and test utterances. The keyword detection result is then obtained by ranking the distortion scores of all the test utterances. We examine the TIMIT corpus as a development set to tune the parameters in our system, and the MIT Lecture corpus for more substantial evaluation. The results demonstrate the viability and effectiveness of our unsupervised learning framework on the keyword spotting task.","PeriodicalId":292194,"journal":{"name":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"363","resultStr":"{\"title\":\"Unsupervised spoken keyword spotting via segmental DTW on Gaussian posteriorgrams\",\"authors\":\"Yaodong Zhang, James R. Glass\",\"doi\":\"10.1109/ASRU.2009.5372931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an unsupervised learning framework to address the problem of detecting spoken keywords. Without any transcription information, a Gaussian Mixture Model is trained to label speech frames with a Gaussian posteriorgram. Given one or more spoken examples of a keyword, we use segmental dynamic time warping to compare the Gaussian posteriorgrams between keyword samples and test utterances. The keyword detection result is then obtained by ranking the distortion scores of all the test utterances. We examine the TIMIT corpus as a development set to tune the parameters in our system, and the MIT Lecture corpus for more substantial evaluation. The results demonstrate the viability and effectiveness of our unsupervised learning framework on the keyword spotting task.\",\"PeriodicalId\":292194,\"journal\":{\"name\":\"2009 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"363\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2009.5372931\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2009.5372931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unsupervised spoken keyword spotting via segmental DTW on Gaussian posteriorgrams
In this paper, we present an unsupervised learning framework to address the problem of detecting spoken keywords. Without any transcription information, a Gaussian Mixture Model is trained to label speech frames with a Gaussian posteriorgram. Given one or more spoken examples of a keyword, we use segmental dynamic time warping to compare the Gaussian posteriorgrams between keyword samples and test utterances. The keyword detection result is then obtained by ranking the distortion scores of all the test utterances. We examine the TIMIT corpus as a development set to tune the parameters in our system, and the MIT Lecture corpus for more substantial evaluation. The results demonstrate the viability and effectiveness of our unsupervised learning framework on the keyword spotting task.