负荷建模对配电网重构的影响研究

Shaziya Rasheed, A. Abhyankar
{"title":"负荷建模对配电网重构的影响研究","authors":"Shaziya Rasheed, A. Abhyankar","doi":"10.1109/NAPS46351.2019.9000297","DOIUrl":null,"url":null,"abstract":"In order to minimize the losses of the distribution network, solving the reconfiguration problem is a vitally established issue. Modification in the bus connection reduces the system loss and improves the bus voltages as well. Major intricacy for reconfiguring distribution system lies in the development of a convex optimization model constituting voltage-dependent loads. This paper models mixed integer second order conic program for Network Reconfiguration of a Distribution System (NRDS), where binary variables depict the branch connections between the buses. A ZIP load model composed of constant impedance, constant current, and constant power type loads, has been deployed for voltage-dependent load study. Proposed ZIP load model based NRDS has been tested on 33-bus, and 69-bus distribution system. Results are compared with the existing model given in literature incorporating only constant power loads that establishes the case for adaptation of the proposed model. Simulated results of constant power and voltage-dependent load model are also validated by performing load flow for evaluated branch connections.","PeriodicalId":175719,"journal":{"name":"2019 North American Power Symposium (NAPS)","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the Effect of Load Modeling on Network Reconfiguration of a Distribution System\",\"authors\":\"Shaziya Rasheed, A. Abhyankar\",\"doi\":\"10.1109/NAPS46351.2019.9000297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to minimize the losses of the distribution network, solving the reconfiguration problem is a vitally established issue. Modification in the bus connection reduces the system loss and improves the bus voltages as well. Major intricacy for reconfiguring distribution system lies in the development of a convex optimization model constituting voltage-dependent loads. This paper models mixed integer second order conic program for Network Reconfiguration of a Distribution System (NRDS), where binary variables depict the branch connections between the buses. A ZIP load model composed of constant impedance, constant current, and constant power type loads, has been deployed for voltage-dependent load study. Proposed ZIP load model based NRDS has been tested on 33-bus, and 69-bus distribution system. Results are compared with the existing model given in literature incorporating only constant power loads that establishes the case for adaptation of the proposed model. Simulated results of constant power and voltage-dependent load model are also validated by performing load flow for evaluated branch connections.\",\"PeriodicalId\":175719,\"journal\":{\"name\":\"2019 North American Power Symposium (NAPS)\",\"volume\":\"131 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 North American Power Symposium (NAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAPS46351.2019.9000297\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 North American Power Symposium (NAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAPS46351.2019.9000297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了使配电网的损耗最小化,解决配电网的重构问题是一个至关重要的问题。修改母线连接减少了系统损耗,也提高了母线电压。配电系统重构的主要复杂性在于建立一个由电压相关负荷构成的凸优化模型。本文建立了配电系统网络重构的混合整数二阶二次规划模型,其中二元变量描述了各母线之间的分支连接。一个由恒阻抗、恒电流和恒功率负载组成的ZIP负载模型被用于电压相关负载的研究。本文提出的基于NRDS的ZIP负荷模型在33总线和69总线配电系统上进行了测试。结果与文献中给出的仅包含恒定功率负荷的现有模型进行了比较,该模型建立了拟议模型的适应性。通过对所评估的分支连接进行负荷流计算,验证了恒功率和电压相关负荷模型的仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigating the Effect of Load Modeling on Network Reconfiguration of a Distribution System
In order to minimize the losses of the distribution network, solving the reconfiguration problem is a vitally established issue. Modification in the bus connection reduces the system loss and improves the bus voltages as well. Major intricacy for reconfiguring distribution system lies in the development of a convex optimization model constituting voltage-dependent loads. This paper models mixed integer second order conic program for Network Reconfiguration of a Distribution System (NRDS), where binary variables depict the branch connections between the buses. A ZIP load model composed of constant impedance, constant current, and constant power type loads, has been deployed for voltage-dependent load study. Proposed ZIP load model based NRDS has been tested on 33-bus, and 69-bus distribution system. Results are compared with the existing model given in literature incorporating only constant power loads that establishes the case for adaptation of the proposed model. Simulated results of constant power and voltage-dependent load model are also validated by performing load flow for evaluated branch connections.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信