Banach空间直接和的球生成性质

Jan-David Hardtke
{"title":"Banach空间直接和的球生成性质","authors":"Jan-David Hardtke","doi":"10.3318/PRIA.2015.115.13","DOIUrl":null,"url":null,"abstract":"A Banach space $X$ is said to have the ball generated property (BGP) if every closed, bounded, convex subset of $X$ can be written as an intersection of finite unions of closed balls. In 2002 S. Basu proved that the BGP is stable under (infinite) $c_0$- and $\\ell^p$-sums for $1<p<\\infty$. We will show here that for any absolute, normalised norm $\\|\\cdot\\|_E$ on $\\mathbb{R}^2$ satisfying a certain smoothness condition the direct sum $X\\oplus_E Y$ of two Banach spaces $X$ and $Y$ with respect to $\\|\\cdot\\|_E$ enjoys the BGP whenever $X$ and $Y$ have the BGP.","PeriodicalId":434988,"journal":{"name":"Mathematical Proceedings of the Royal Irish Academy","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ball generated property of direct sums of Banach spaces\",\"authors\":\"Jan-David Hardtke\",\"doi\":\"10.3318/PRIA.2015.115.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Banach space $X$ is said to have the ball generated property (BGP) if every closed, bounded, convex subset of $X$ can be written as an intersection of finite unions of closed balls. In 2002 S. Basu proved that the BGP is stable under (infinite) $c_0$- and $\\\\ell^p$-sums for $1<p<\\\\infty$. We will show here that for any absolute, normalised norm $\\\\|\\\\cdot\\\\|_E$ on $\\\\mathbb{R}^2$ satisfying a certain smoothness condition the direct sum $X\\\\oplus_E Y$ of two Banach spaces $X$ and $Y$ with respect to $\\\\|\\\\cdot\\\\|_E$ enjoys the BGP whenever $X$ and $Y$ have the BGP.\",\"PeriodicalId\":434988,\"journal\":{\"name\":\"Mathematical Proceedings of the Royal Irish Academy\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Royal Irish Academy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3318/PRIA.2015.115.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Royal Irish Academy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3318/PRIA.2015.115.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

巴拿赫空间 $X$ 据说有球生成属性(BGP),如果每一个封闭的,有界的,凸子集 $X$ 可以写成闭合球的有限并集的交集。2002年S. Basu证明了BGP在(无穷)条件下是稳定的。 $c_0$-和 $\ell^p$-总和 $1本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Ball generated property of direct sums of Banach spaces
A Banach space $X$ is said to have the ball generated property (BGP) if every closed, bounded, convex subset of $X$ can be written as an intersection of finite unions of closed balls. In 2002 S. Basu proved that the BGP is stable under (infinite) $c_0$- and $\ell^p$-sums for $1
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信