二值数据广义极值回归模型中的极大似然估计

Lo Fatimata, Demba Ba, Diop Aba
{"title":"二值数据广义极值回归模型中的极大似然估计","authors":"Lo Fatimata, Demba Ba, Diop Aba","doi":"10.56947/gjom.v12i2.733","DOIUrl":null,"url":null,"abstract":"Generalized extreme value regression model is widely used when the dependent variable Y represents a rare event. The quantile function of the GEV distribution is used as link function to investigate the relationship between the binary outcome Y and a set of potential predictors X. In this article we develop a maximum likelihood estimation procedure int he generalized extreme value regression model. We establish the asymptotic properties (existence, consistency and asymptotic normality) of the proposed maximum likelihood estimator.","PeriodicalId":421614,"journal":{"name":"Gulf Journal of Mathematics","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Maximum likelihood estimation in the generalized extreme value regression model for binary data\",\"authors\":\"Lo Fatimata, Demba Ba, Diop Aba\",\"doi\":\"10.56947/gjom.v12i2.733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generalized extreme value regression model is widely used when the dependent variable Y represents a rare event. The quantile function of the GEV distribution is used as link function to investigate the relationship between the binary outcome Y and a set of potential predictors X. In this article we develop a maximum likelihood estimation procedure int he generalized extreme value regression model. We establish the asymptotic properties (existence, consistency and asymptotic normality) of the proposed maximum likelihood estimator.\",\"PeriodicalId\":421614,\"journal\":{\"name\":\"Gulf Journal of Mathematics\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gulf Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56947/gjom.v12i2.733\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gulf Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56947/gjom.v12i2.733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

广义极值回归模型在因变量Y代表罕见事件时被广泛使用。利用GEV分布的分位数函数作为链接函数,研究了二元结果Y与一组潜在预测因子x之间的关系。本文提出了广义极值回归模型的极大似然估计方法。我们建立了所提出的极大似然估计的渐近性质(存在性、相合性和渐近正态性)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximum likelihood estimation in the generalized extreme value regression model for binary data
Generalized extreme value regression model is widely used when the dependent variable Y represents a rare event. The quantile function of the GEV distribution is used as link function to investigate the relationship between the binary outcome Y and a set of potential predictors X. In this article we develop a maximum likelihood estimation procedure int he generalized extreme value regression model. We establish the asymptotic properties (existence, consistency and asymptotic normality) of the proposed maximum likelihood estimator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信