关于PrÜfer v-乘法环的说明

Ryuki Matsuda
{"title":"关于PrÜfer v-乘法环的说明","authors":"Ryuki Matsuda","doi":"10.5036/BFSIU1968.12.9","DOIUrl":null,"url":null,"abstract":"Let D be an integral domain (∋1) and K be the quotient field of D. Let F(D) be the set of nonzero fractional ideals of D. A mapping * of F(D) into itself is called *-operation on D if it satisfies: (1) for 0_??_a∈K and a∈F(D), we have (a)* =(a) and (aa)*=aa*; (2) for a∈F(D), we have a⊂a*(⊂ means ⊆) and, a⊂b implies a*⊂b*; (3) for a∈F(D), we have (a*)*=a*. For example, a mapping a_??_(a-1)-1 is a *-operation, and is called v-operation. For a subset b⊂K, we denote {x∈K; xb⊂A} by b-1 in general. Let * be a *-operation on D. The mapping (a, b)_??_(ab)* is called *-product. If{a*; 0_??_a finitely generated} makes a group under the *-product, D is called prufer *-multiplication domain. As to the conditions and the related properties under which D becomes a prufer *-multi-","PeriodicalId":141145,"journal":{"name":"Bulletin of The Faculty of Science, Ibaraki University. Series A, Mathematics","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1980-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Notes on PrÜfer v-Multiplication Rings\",\"authors\":\"Ryuki Matsuda\",\"doi\":\"10.5036/BFSIU1968.12.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let D be an integral domain (∋1) and K be the quotient field of D. Let F(D) be the set of nonzero fractional ideals of D. A mapping * of F(D) into itself is called *-operation on D if it satisfies: (1) for 0_??_a∈K and a∈F(D), we have (a)* =(a) and (aa)*=aa*; (2) for a∈F(D), we have a⊂a*(⊂ means ⊆) and, a⊂b implies a*⊂b*; (3) for a∈F(D), we have (a*)*=a*. For example, a mapping a_??_(a-1)-1 is a *-operation, and is called v-operation. For a subset b⊂K, we denote {x∈K; xb⊂A} by b-1 in general. Let * be a *-operation on D. The mapping (a, b)_??_(ab)* is called *-product. If{a*; 0_??_a finitely generated} makes a group under the *-product, D is called prufer *-multiplication domain. As to the conditions and the related properties under which D becomes a prufer *-multi-\",\"PeriodicalId\":141145,\"journal\":{\"name\":\"Bulletin of The Faculty of Science, Ibaraki University. Series A, Mathematics\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1980-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of The Faculty of Science, Ibaraki University. Series A, Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5036/BFSIU1968.12.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of The Faculty of Science, Ibaraki University. Series A, Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5036/BFSIU1968.12.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

设D是一个积分定义域(1),K是D的商域(1),设F(D)是D的非零分数理想的集合。将F(D)的*映射到自身称为对D的*-运算,如果它满足:(1)对于0_?? ?_a∈K和∈F (D),我们(a) * = (a)和(aa) * = aa *;(2)对于a∈F(D),有a∧a*(∧表示蔓生),a∧b表示a*∧b*;(3)对于a∈F(D),有(a*)*=a*。例如,映射a_??_(a-1)-1是*-操作,称为v-操作。对于一个子集b∧K,我们表示{x∈K;xb∧A} by b-1。设*是d上的一个*-运算。映射(a, b)_? _(ab)*称为*-积。如果{*;0 _ ? ?_a有限生成}在*-积下形成一个群,D称为prufer *-乘法域。关于D成为普惠*-多的条件和有关性质
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Notes on PrÜfer v-Multiplication Rings
Let D be an integral domain (∋1) and K be the quotient field of D. Let F(D) be the set of nonzero fractional ideals of D. A mapping * of F(D) into itself is called *-operation on D if it satisfies: (1) for 0_??_a∈K and a∈F(D), we have (a)* =(a) and (aa)*=aa*; (2) for a∈F(D), we have a⊂a*(⊂ means ⊆) and, a⊂b implies a*⊂b*; (3) for a∈F(D), we have (a*)*=a*. For example, a mapping a_??_(a-1)-1 is a *-operation, and is called v-operation. For a subset b⊂K, we denote {x∈K; xb⊂A} by b-1 in general. Let * be a *-operation on D. The mapping (a, b)_??_(ab)* is called *-product. If{a*; 0_??_a finitely generated} makes a group under the *-product, D is called prufer *-multiplication domain. As to the conditions and the related properties under which D becomes a prufer *-multi-
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信