{"title":"二元超几何系统Puiseux多项式解解析复杂度的上界","authors":"V. Krasikov","doi":"10.17516/1997-1397-2020-13-6-718-732","DOIUrl":null,"url":null,"abstract":"The paper deals with the analytic complexity of solutions to bivariate holonomic hypergeometric systems of the Horn type. We obtain estimates on the analytic complexity of Puiseux polynomial solutions to the hypergeometric systems defined by zonotopes. We also propose algorithms of the analytic complexity estimation for polynomials","PeriodicalId":422202,"journal":{"name":"Journal of Siberian Federal University. Mathematics and Physics","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Upper Bounds for the Analytic Complexity of Puiseux Polynomial Solutions to Bivariate Hypergeometric Systems\",\"authors\":\"V. Krasikov\",\"doi\":\"10.17516/1997-1397-2020-13-6-718-732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper deals with the analytic complexity of solutions to bivariate holonomic hypergeometric systems of the Horn type. We obtain estimates on the analytic complexity of Puiseux polynomial solutions to the hypergeometric systems defined by zonotopes. We also propose algorithms of the analytic complexity estimation for polynomials\",\"PeriodicalId\":422202,\"journal\":{\"name\":\"Journal of Siberian Federal University. Mathematics and Physics\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Siberian Federal University. Mathematics and Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17516/1997-1397-2020-13-6-718-732\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Siberian Federal University. Mathematics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17516/1997-1397-2020-13-6-718-732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Upper Bounds for the Analytic Complexity of Puiseux Polynomial Solutions to Bivariate Hypergeometric Systems
The paper deals with the analytic complexity of solutions to bivariate holonomic hypergeometric systems of the Horn type. We obtain estimates on the analytic complexity of Puiseux polynomial solutions to the hypergeometric systems defined by zonotopes. We also propose algorithms of the analytic complexity estimation for polynomials