{"title":"原位生长纳米石墨烯用于湿度传感的可行性研究","authors":"Dennis Noll, U. Schwalke","doi":"10.1109/DTIS.2017.7930160","DOIUrl":null,"url":null,"abstract":"The application of in-situ transfer-free nanocrystalline graphene grown by polymer enhanced catalytic chemical vapor deposition [1] for sensing humidity in an atmospheric environment is investigated by electrical testing. Exposure of the graphene devices to humidity enriched air leads to a relative resistance change of an absolute value of up to 3.5%. Furthermore, post application of a hydrophobic hexamethyldisilazane self-assembled monolayer onto the graphene transistors is attempted leading to a shift of the charge neutrality point towards zero potential. Yet, our devices show more pronounced rayleigh scattering after the self-assembled monolayer application, decreasing the current by a factor of 3.","PeriodicalId":328905,"journal":{"name":"2017 12th International Conference on Design & Technology of Integrated Systems In Nanoscale Era (DTIS)","volume":"200 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Feasibility study of in-situ grown nanocrystalline graphene for humidity sensing\",\"authors\":\"Dennis Noll, U. Schwalke\",\"doi\":\"10.1109/DTIS.2017.7930160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The application of in-situ transfer-free nanocrystalline graphene grown by polymer enhanced catalytic chemical vapor deposition [1] for sensing humidity in an atmospheric environment is investigated by electrical testing. Exposure of the graphene devices to humidity enriched air leads to a relative resistance change of an absolute value of up to 3.5%. Furthermore, post application of a hydrophobic hexamethyldisilazane self-assembled monolayer onto the graphene transistors is attempted leading to a shift of the charge neutrality point towards zero potential. Yet, our devices show more pronounced rayleigh scattering after the self-assembled monolayer application, decreasing the current by a factor of 3.\",\"PeriodicalId\":328905,\"journal\":{\"name\":\"2017 12th International Conference on Design & Technology of Integrated Systems In Nanoscale Era (DTIS)\",\"volume\":\"200 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 12th International Conference on Design & Technology of Integrated Systems In Nanoscale Era (DTIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DTIS.2017.7930160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th International Conference on Design & Technology of Integrated Systems In Nanoscale Era (DTIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DTIS.2017.7930160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Feasibility study of in-situ grown nanocrystalline graphene for humidity sensing
The application of in-situ transfer-free nanocrystalline graphene grown by polymer enhanced catalytic chemical vapor deposition [1] for sensing humidity in an atmospheric environment is investigated by electrical testing. Exposure of the graphene devices to humidity enriched air leads to a relative resistance change of an absolute value of up to 3.5%. Furthermore, post application of a hydrophobic hexamethyldisilazane self-assembled monolayer onto the graphene transistors is attempted leading to a shift of the charge neutrality point towards zero potential. Yet, our devices show more pronounced rayleigh scattering after the self-assembled monolayer application, decreasing the current by a factor of 3.