android设备中基于网络流量分析的恶意软件检测工具的设计与实现

Areen Eltaher, Dania Abu-juma'a, Dania Hashem, Heba Alawneh
{"title":"android设备中基于网络流量分析的恶意软件检测工具的设计与实现","authors":"Areen Eltaher, Dania Abu-juma'a, Dania Hashem, Heba Alawneh","doi":"10.1109/JEEIT58638.2023.10185826","DOIUrl":null,"url":null,"abstract":"Smartphone use and dependability have increased substantially in recent years, as have malicious attempts to compromise mobile devices with various malware. Therefore, smartphones must have an active malware detection program to protect user privacy. We propose Android Malware Buster (AMB), a malware detection application for Android devices. AMB utilizes a machine learning classifier to identify ongoing malicious behavior through its network traffic analysis. The machine learning model was trained on a diverse set of Adware, Scareware, and Ransomware apps. The accuracy of the AMB classifier has reached 93 %. Furthermore, AMB correctly classified the vast majority of applications during real-time testing.","PeriodicalId":177556,"journal":{"name":"2023 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Implementation of a Malware Detection Tool Using Network Traffic Analysis in Android-based Devices\",\"authors\":\"Areen Eltaher, Dania Abu-juma'a, Dania Hashem, Heba Alawneh\",\"doi\":\"10.1109/JEEIT58638.2023.10185826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Smartphone use and dependability have increased substantially in recent years, as have malicious attempts to compromise mobile devices with various malware. Therefore, smartphones must have an active malware detection program to protect user privacy. We propose Android Malware Buster (AMB), a malware detection application for Android devices. AMB utilizes a machine learning classifier to identify ongoing malicious behavior through its network traffic analysis. The machine learning model was trained on a diverse set of Adware, Scareware, and Ransomware apps. The accuracy of the AMB classifier has reached 93 %. Furthermore, AMB correctly classified the vast majority of applications during real-time testing.\",\"PeriodicalId\":177556,\"journal\":{\"name\":\"2023 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JEEIT58638.2023.10185826\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JEEIT58638.2023.10185826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,智能手机的使用和可靠性大幅增加,同时各种恶意软件也试图破坏移动设备。因此,智能手机必须有一个活跃的恶意软件检测程序,以保护用户的隐私。我们提出Android Malware Buster (AMB),一个Android设备的恶意软件检测应用程序。AMB利用机器学习分类器通过其网络流量分析来识别正在进行的恶意行为。机器学习模型在各种各样的广告软件、恐吓软件和勒索软件应用程序上进行了训练。AMB分类器的准确率达到93%。此外,AMB在实时测试期间对绝大多数应用程序进行了正确的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and Implementation of a Malware Detection Tool Using Network Traffic Analysis in Android-based Devices
Smartphone use and dependability have increased substantially in recent years, as have malicious attempts to compromise mobile devices with various malware. Therefore, smartphones must have an active malware detection program to protect user privacy. We propose Android Malware Buster (AMB), a malware detection application for Android devices. AMB utilizes a machine learning classifier to identify ongoing malicious behavior through its network traffic analysis. The machine learning model was trained on a diverse set of Adware, Scareware, and Ransomware apps. The accuracy of the AMB classifier has reached 93 %. Furthermore, AMB correctly classified the vast majority of applications during real-time testing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信