P. Hart, P. Kollmeyer, L. Juang, R. Lasseter, T. Jahns
{"title":"用于CERTS微电网的二次寿命电池建模","authors":"P. Hart, P. Kollmeyer, L. Juang, R. Lasseter, T. Jahns","doi":"10.1109/PECI.2014.6804554","DOIUrl":null,"url":null,"abstract":"A second-life battery is an electric vehicle battery pack that has reached an end-of-life condition for its vehicular use, yet retains enough performance to be re-purposed for another application. One promising application of a second-life battery is stationary energy storage within a CERTS microgrid. This paper investigates the modeling of multiple paralleled traction battery packs within a CERTS microgrid, examining the impacts of elevated internal pack impedance on microgrid system operation. Impedance spectroscopy and hybrid-pulse power characterization are used to model vehicular Li-ion cells under a range of conditions that include second-life aging. The ac bus dynamics of the microgrid model are validated experimentally. Second-life battery models are incorporated into two CERTS microgrid architectures and system-level effects of changing the battery impedance are explored. Simulation results indicate that the modeled EV second-life batteries deliver promising performance characteristics in both CERTS microgrid architectures that were investigated.","PeriodicalId":352005,"journal":{"name":"2014 Power and Energy Conference at Illinois (PECI)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Modeling of second-life batteries for use in a CERTS microgrid\",\"authors\":\"P. Hart, P. Kollmeyer, L. Juang, R. Lasseter, T. Jahns\",\"doi\":\"10.1109/PECI.2014.6804554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A second-life battery is an electric vehicle battery pack that has reached an end-of-life condition for its vehicular use, yet retains enough performance to be re-purposed for another application. One promising application of a second-life battery is stationary energy storage within a CERTS microgrid. This paper investigates the modeling of multiple paralleled traction battery packs within a CERTS microgrid, examining the impacts of elevated internal pack impedance on microgrid system operation. Impedance spectroscopy and hybrid-pulse power characterization are used to model vehicular Li-ion cells under a range of conditions that include second-life aging. The ac bus dynamics of the microgrid model are validated experimentally. Second-life battery models are incorporated into two CERTS microgrid architectures and system-level effects of changing the battery impedance are explored. Simulation results indicate that the modeled EV second-life batteries deliver promising performance characteristics in both CERTS microgrid architectures that were investigated.\",\"PeriodicalId\":352005,\"journal\":{\"name\":\"2014 Power and Energy Conference at Illinois (PECI)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Power and Energy Conference at Illinois (PECI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PECI.2014.6804554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Power and Energy Conference at Illinois (PECI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PECI.2014.6804554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling of second-life batteries for use in a CERTS microgrid
A second-life battery is an electric vehicle battery pack that has reached an end-of-life condition for its vehicular use, yet retains enough performance to be re-purposed for another application. One promising application of a second-life battery is stationary energy storage within a CERTS microgrid. This paper investigates the modeling of multiple paralleled traction battery packs within a CERTS microgrid, examining the impacts of elevated internal pack impedance on microgrid system operation. Impedance spectroscopy and hybrid-pulse power characterization are used to model vehicular Li-ion cells under a range of conditions that include second-life aging. The ac bus dynamics of the microgrid model are validated experimentally. Second-life battery models are incorporated into two CERTS microgrid architectures and system-level effects of changing the battery impedance are explored. Simulation results indicate that the modeled EV second-life batteries deliver promising performance characteristics in both CERTS microgrid architectures that were investigated.