{"title":"I/O比CPU快:让我们划分资源并消除(大多数)操作系统抽象","authors":"Pekka Enberg, Ashwin Rao, S. Tarkoma","doi":"10.1145/3317550.3321426","DOIUrl":null,"url":null,"abstract":"I/O is getting faster in servers that have fast programmable NICs and non-volatile main memory operating close to the speed of DRAM, but single-threaded CPU speeds have stagnated. Applications cannot take advantage of modern hardware capabilities when using interfaces built around abstractions that assume I/O to be slow. We therefore propose a structure for an OS called parakernel, which eliminates most OS abstractions and provides interfaces for applications to leverage the full potential of the underlying hardware. The parakernel facilitates application-level parallelism by securely partitioning the resources and multiplexing only those resources that are not partitioned.","PeriodicalId":224944,"journal":{"name":"Proceedings of the Workshop on Hot Topics in Operating Systems","volume":"375 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"I/O Is Faster Than the CPU: Let's Partition Resources and Eliminate (Most) OS Abstractions\",\"authors\":\"Pekka Enberg, Ashwin Rao, S. Tarkoma\",\"doi\":\"10.1145/3317550.3321426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"I/O is getting faster in servers that have fast programmable NICs and non-volatile main memory operating close to the speed of DRAM, but single-threaded CPU speeds have stagnated. Applications cannot take advantage of modern hardware capabilities when using interfaces built around abstractions that assume I/O to be slow. We therefore propose a structure for an OS called parakernel, which eliminates most OS abstractions and provides interfaces for applications to leverage the full potential of the underlying hardware. The parakernel facilitates application-level parallelism by securely partitioning the resources and multiplexing only those resources that are not partitioned.\",\"PeriodicalId\":224944,\"journal\":{\"name\":\"Proceedings of the Workshop on Hot Topics in Operating Systems\",\"volume\":\"375 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Workshop on Hot Topics in Operating Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3317550.3321426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Workshop on Hot Topics in Operating Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3317550.3321426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
I/O Is Faster Than the CPU: Let's Partition Resources and Eliminate (Most) OS Abstractions
I/O is getting faster in servers that have fast programmable NICs and non-volatile main memory operating close to the speed of DRAM, but single-threaded CPU speeds have stagnated. Applications cannot take advantage of modern hardware capabilities when using interfaces built around abstractions that assume I/O to be slow. We therefore propose a structure for an OS called parakernel, which eliminates most OS abstractions and provides interfaces for applications to leverage the full potential of the underlying hardware. The parakernel facilitates application-level parallelism by securely partitioning the resources and multiplexing only those resources that are not partitioned.