Chenda Li, Yi Luo, Cong Han, Jinyu Li, Takuya Yoshioka, Tianyan Zhou, Marc Delcroix, K. Kinoshita, Christoph Böddeker, Y. Qian, Shinji Watanabe, Zhuo Chen
{"title":"用于长录音语音分离的双路径RNN","authors":"Chenda Li, Yi Luo, Cong Han, Jinyu Li, Takuya Yoshioka, Tianyan Zhou, Marc Delcroix, K. Kinoshita, Christoph Böddeker, Y. Qian, Shinji Watanabe, Zhuo Chen","doi":"10.1109/SLT48900.2021.9383514","DOIUrl":null,"url":null,"abstract":"Continuous speech separation (CSS) is an arising task in speech separation aiming at separating overlap-free targets from a long, partially-overlapped recording. A straightforward extension of previously proposed sentence-level separation models to this task is to segment the long recording into fixed-length blocks and perform separation on them independently. However, such simple extension does not fully address the cross-block dependencies and the separation performance may not be satisfactory. In this paper, we focus on how the block-level separation performance can be improved by exploring methods to utilize the cross-block information. Based on the recently proposed dual-path RNN (DPRNN) architecture, we investigate how DPRNN can help the block-level separation by the interleaved intra- and inter-block modules. Experiment results show that DPRNN is able to significantly outperform the baseline block-level model in both offline and block-online configurations under certain settings.","PeriodicalId":243211,"journal":{"name":"2021 IEEE Spoken Language Technology Workshop (SLT)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Dual-Path RNN for Long Recording Speech Separation\",\"authors\":\"Chenda Li, Yi Luo, Cong Han, Jinyu Li, Takuya Yoshioka, Tianyan Zhou, Marc Delcroix, K. Kinoshita, Christoph Böddeker, Y. Qian, Shinji Watanabe, Zhuo Chen\",\"doi\":\"10.1109/SLT48900.2021.9383514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Continuous speech separation (CSS) is an arising task in speech separation aiming at separating overlap-free targets from a long, partially-overlapped recording. A straightforward extension of previously proposed sentence-level separation models to this task is to segment the long recording into fixed-length blocks and perform separation on them independently. However, such simple extension does not fully address the cross-block dependencies and the separation performance may not be satisfactory. In this paper, we focus on how the block-level separation performance can be improved by exploring methods to utilize the cross-block information. Based on the recently proposed dual-path RNN (DPRNN) architecture, we investigate how DPRNN can help the block-level separation by the interleaved intra- and inter-block modules. Experiment results show that DPRNN is able to significantly outperform the baseline block-level model in both offline and block-online configurations under certain settings.\",\"PeriodicalId\":243211,\"journal\":{\"name\":\"2021 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT48900.2021.9383514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT48900.2021.9383514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dual-Path RNN for Long Recording Speech Separation
Continuous speech separation (CSS) is an arising task in speech separation aiming at separating overlap-free targets from a long, partially-overlapped recording. A straightforward extension of previously proposed sentence-level separation models to this task is to segment the long recording into fixed-length blocks and perform separation on them independently. However, such simple extension does not fully address the cross-block dependencies and the separation performance may not be satisfactory. In this paper, we focus on how the block-level separation performance can be improved by exploring methods to utilize the cross-block information. Based on the recently proposed dual-path RNN (DPRNN) architecture, we investigate how DPRNN can help the block-level separation by the interleaved intra- and inter-block modules. Experiment results show that DPRNN is able to significantly outperform the baseline block-level model in both offline and block-online configurations under certain settings.