使用机器学习算法的物联网健康监测系统

S. S., T. Sheela, T. Muthumanickam
{"title":"使用机器学习算法的物联网健康监测系统","authors":"S. S., T. Sheela, T. Muthumanickam","doi":"10.1109/ICECA55336.2022.10009285","DOIUrl":null,"url":null,"abstract":"Now-a-davs Internet of Things (IoT) is used in various real-time applications, Including smart health monitoring. The existing health monitoring system can only collect the basic information about heat. heartbeat. and BP (Blood Pressure). This research study proposes an effective examination of patient's brain signals and detect the health status of the patient in real time. The main objective of the proposed study is to provide a proper optimized value about the mentally challenged patients by collecting the data information from brain signals with 24 channels and study the body parameters through each EEG (Electroencephalography) signal channel. Here, the collected data is pre-processed by using Machine Learninz (ML) tools and Neural Networks (NN) with Python programming language, By collecting the data information from brain signals with EEG sensors, an optimized value and solution can be provided to the patients suffering from Cerebral Palsy (CP). The collected data is then stored in a cloud storage platform and it can be accessed from any remote location. The stored data is then collected and filtered by using PCA techniques and further the Artifact siznals (Noise) are removed to diagnose seizures by Identifying brain signal parameters (Alpha, Beta, Delta and Theta). Further, a novel model has been designed by using python programming languaze for training the machine with a maximum number of datasets in order to check accuracy and predict the seizure levels of any CP patient. Neural Network (NN) algorithms were applied here by using python programming language in order to check the percentage error in the data processing mechanism. Once the data is analyzed with the proposed model it suggests the CP patient for Tentative Treatment.","PeriodicalId":356949,"journal":{"name":"2022 6th International Conference on Electronics, Communication and Aerospace Technology","volume":"187 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IoT Enabled Health Monitoring System using Machine Learning Algorithm\",\"authors\":\"S. S., T. Sheela, T. Muthumanickam\",\"doi\":\"10.1109/ICECA55336.2022.10009285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Now-a-davs Internet of Things (IoT) is used in various real-time applications, Including smart health monitoring. The existing health monitoring system can only collect the basic information about heat. heartbeat. and BP (Blood Pressure). This research study proposes an effective examination of patient's brain signals and detect the health status of the patient in real time. The main objective of the proposed study is to provide a proper optimized value about the mentally challenged patients by collecting the data information from brain signals with 24 channels and study the body parameters through each EEG (Electroencephalography) signal channel. Here, the collected data is pre-processed by using Machine Learninz (ML) tools and Neural Networks (NN) with Python programming language, By collecting the data information from brain signals with EEG sensors, an optimized value and solution can be provided to the patients suffering from Cerebral Palsy (CP). The collected data is then stored in a cloud storage platform and it can be accessed from any remote location. The stored data is then collected and filtered by using PCA techniques and further the Artifact siznals (Noise) are removed to diagnose seizures by Identifying brain signal parameters (Alpha, Beta, Delta and Theta). Further, a novel model has been designed by using python programming languaze for training the machine with a maximum number of datasets in order to check accuracy and predict the seizure levels of any CP patient. Neural Network (NN) algorithms were applied here by using python programming language in order to check the percentage error in the data processing mechanism. Once the data is analyzed with the proposed model it suggests the CP patient for Tentative Treatment.\",\"PeriodicalId\":356949,\"journal\":{\"name\":\"2022 6th International Conference on Electronics, Communication and Aerospace Technology\",\"volume\":\"187 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 6th International Conference on Electronics, Communication and Aerospace Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECA55336.2022.10009285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th International Conference on Electronics, Communication and Aerospace Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECA55336.2022.10009285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如今,物联网(IoT)被用于各种实时应用,包括智能健康监控。现有的健康监测系统只能收集热量的基本信息。心跳。和血压。本研究提出了一种有效的检测患者大脑信号的方法,可以实时检测患者的健康状况。本研究的主要目的是通过收集24个脑信号通道的数据信息,研究每个脑电信号通道的身体参数,为智障患者提供合适的优化值。通过机器学习(ML)工具和Python编程语言的神经网络(NN)对采集到的数据进行预处理,利用脑电图传感器从大脑信号中采集数据信息,为脑瘫患者提供优化值和解决方案。然后将收集到的数据存储在云存储平台中,可以从任何远程位置访问。然后使用PCA技术收集和过滤存储的数据,进一步去除伪像大小(噪声),通过识别大脑信号参数(Alpha, Beta, Delta和Theta)来诊断癫痫发作。此外,使用python编程语言设计了一个新的模型,用于用最大数量的数据集训练机器,以检查准确性并预测任何CP患者的癫痫发作程度。本文采用python编程语言,采用神经网络(NN)算法对数据处理机制中的百分比误差进行检测。一旦数据与所提出的模型进行分析,它建议对CP患者进行试探性治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IoT Enabled Health Monitoring System using Machine Learning Algorithm
Now-a-davs Internet of Things (IoT) is used in various real-time applications, Including smart health monitoring. The existing health monitoring system can only collect the basic information about heat. heartbeat. and BP (Blood Pressure). This research study proposes an effective examination of patient's brain signals and detect the health status of the patient in real time. The main objective of the proposed study is to provide a proper optimized value about the mentally challenged patients by collecting the data information from brain signals with 24 channels and study the body parameters through each EEG (Electroencephalography) signal channel. Here, the collected data is pre-processed by using Machine Learninz (ML) tools and Neural Networks (NN) with Python programming language, By collecting the data information from brain signals with EEG sensors, an optimized value and solution can be provided to the patients suffering from Cerebral Palsy (CP). The collected data is then stored in a cloud storage platform and it can be accessed from any remote location. The stored data is then collected and filtered by using PCA techniques and further the Artifact siznals (Noise) are removed to diagnose seizures by Identifying brain signal parameters (Alpha, Beta, Delta and Theta). Further, a novel model has been designed by using python programming languaze for training the machine with a maximum number of datasets in order to check accuracy and predict the seizure levels of any CP patient. Neural Network (NN) algorithms were applied here by using python programming language in order to check the percentage error in the data processing mechanism. Once the data is analyzed with the proposed model it suggests the CP patient for Tentative Treatment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信