走向通用自适应监控

Thomas Brand, H. Giese
{"title":"走向通用自适应监控","authors":"Thomas Brand, H. Giese","doi":"10.1109/SASO.2018.00027","DOIUrl":null,"url":null,"abstract":"Monitoring is a key prerequisite for self-adaptive software and many other forms of operating software. Monitoring relevant lower level phenomena like the occurrences of exceptions and diagnosis data requires to carefully examine which detailed information is really necessary and feasible to monitor. Adaptive monitoring permits observing a greater variety of details with less overhead, if most of the time the MAPE-K loop can operate using only a small subset of all those details. However, engineering such an adaptive monitoring is a major engineering effort on its own that further complicates the development of self-adaptive software. The proposed approach overcomes the outlined problems by providing generic adaptive monitoring via runtime models. It reduces the effort to introduce and apply adaptive monitoring by avoiding additional development effort for controlling the monitoring adaptation. Although the generic approach is independent from the monitoring purpose, it still allows for substantial savings regarding the monitoring resource consumption as demonstrated by an example.","PeriodicalId":405522,"journal":{"name":"2018 IEEE 12th International Conference on Self-Adaptive and Self-Organizing Systems (SASO)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Towards Generic Adaptive Monitoring\",\"authors\":\"Thomas Brand, H. Giese\",\"doi\":\"10.1109/SASO.2018.00027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monitoring is a key prerequisite for self-adaptive software and many other forms of operating software. Monitoring relevant lower level phenomena like the occurrences of exceptions and diagnosis data requires to carefully examine which detailed information is really necessary and feasible to monitor. Adaptive monitoring permits observing a greater variety of details with less overhead, if most of the time the MAPE-K loop can operate using only a small subset of all those details. However, engineering such an adaptive monitoring is a major engineering effort on its own that further complicates the development of self-adaptive software. The proposed approach overcomes the outlined problems by providing generic adaptive monitoring via runtime models. It reduces the effort to introduce and apply adaptive monitoring by avoiding additional development effort for controlling the monitoring adaptation. Although the generic approach is independent from the monitoring purpose, it still allows for substantial savings regarding the monitoring resource consumption as demonstrated by an example.\",\"PeriodicalId\":405522,\"journal\":{\"name\":\"2018 IEEE 12th International Conference on Self-Adaptive and Self-Organizing Systems (SASO)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 12th International Conference on Self-Adaptive and Self-Organizing Systems (SASO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SASO.2018.00027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 12th International Conference on Self-Adaptive and Self-Organizing Systems (SASO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SASO.2018.00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

监控是自适应软件和许多其他形式的操作软件的关键先决条件。监测相关的较低级别现象,如异常的发生和诊断数据,需要仔细检查哪些详细信息是真正必要和可行的监测。如果MAPE-K循环在大多数情况下只使用所有这些细节的一小部分进行操作,则自适应监视允许以更少的开销观察更多种类的细节。然而,设计这样一个自适应监视本身是一个主要的工程工作,它进一步使自适应软件的开发复杂化。所提出的方法通过运行时模型提供通用的自适应监控,从而克服了上述问题。它通过避免为控制监视适应性而进行的额外开发工作,减少了引入和应用自适应监视的工作量。尽管通用方法独立于监视目的,但它仍然可以在监视资源消耗方面节省大量资源,如示例所示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Generic Adaptive Monitoring
Monitoring is a key prerequisite for self-adaptive software and many other forms of operating software. Monitoring relevant lower level phenomena like the occurrences of exceptions and diagnosis data requires to carefully examine which detailed information is really necessary and feasible to monitor. Adaptive monitoring permits observing a greater variety of details with less overhead, if most of the time the MAPE-K loop can operate using only a small subset of all those details. However, engineering such an adaptive monitoring is a major engineering effort on its own that further complicates the development of self-adaptive software. The proposed approach overcomes the outlined problems by providing generic adaptive monitoring via runtime models. It reduces the effort to introduce and apply adaptive monitoring by avoiding additional development effort for controlling the monitoring adaptation. Although the generic approach is independent from the monitoring purpose, it still allows for substantial savings regarding the monitoring resource consumption as demonstrated by an example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信