{"title":"走向通用自适应监控","authors":"Thomas Brand, H. Giese","doi":"10.1109/SASO.2018.00027","DOIUrl":null,"url":null,"abstract":"Monitoring is a key prerequisite for self-adaptive software and many other forms of operating software. Monitoring relevant lower level phenomena like the occurrences of exceptions and diagnosis data requires to carefully examine which detailed information is really necessary and feasible to monitor. Adaptive monitoring permits observing a greater variety of details with less overhead, if most of the time the MAPE-K loop can operate using only a small subset of all those details. However, engineering such an adaptive monitoring is a major engineering effort on its own that further complicates the development of self-adaptive software. The proposed approach overcomes the outlined problems by providing generic adaptive monitoring via runtime models. It reduces the effort to introduce and apply adaptive monitoring by avoiding additional development effort for controlling the monitoring adaptation. Although the generic approach is independent from the monitoring purpose, it still allows for substantial savings regarding the monitoring resource consumption as demonstrated by an example.","PeriodicalId":405522,"journal":{"name":"2018 IEEE 12th International Conference on Self-Adaptive and Self-Organizing Systems (SASO)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Towards Generic Adaptive Monitoring\",\"authors\":\"Thomas Brand, H. Giese\",\"doi\":\"10.1109/SASO.2018.00027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monitoring is a key prerequisite for self-adaptive software and many other forms of operating software. Monitoring relevant lower level phenomena like the occurrences of exceptions and diagnosis data requires to carefully examine which detailed information is really necessary and feasible to monitor. Adaptive monitoring permits observing a greater variety of details with less overhead, if most of the time the MAPE-K loop can operate using only a small subset of all those details. However, engineering such an adaptive monitoring is a major engineering effort on its own that further complicates the development of self-adaptive software. The proposed approach overcomes the outlined problems by providing generic adaptive monitoring via runtime models. It reduces the effort to introduce and apply adaptive monitoring by avoiding additional development effort for controlling the monitoring adaptation. Although the generic approach is independent from the monitoring purpose, it still allows for substantial savings regarding the monitoring resource consumption as demonstrated by an example.\",\"PeriodicalId\":405522,\"journal\":{\"name\":\"2018 IEEE 12th International Conference on Self-Adaptive and Self-Organizing Systems (SASO)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 12th International Conference on Self-Adaptive and Self-Organizing Systems (SASO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SASO.2018.00027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 12th International Conference on Self-Adaptive and Self-Organizing Systems (SASO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SASO.2018.00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Monitoring is a key prerequisite for self-adaptive software and many other forms of operating software. Monitoring relevant lower level phenomena like the occurrences of exceptions and diagnosis data requires to carefully examine which detailed information is really necessary and feasible to monitor. Adaptive monitoring permits observing a greater variety of details with less overhead, if most of the time the MAPE-K loop can operate using only a small subset of all those details. However, engineering such an adaptive monitoring is a major engineering effort on its own that further complicates the development of self-adaptive software. The proposed approach overcomes the outlined problems by providing generic adaptive monitoring via runtime models. It reduces the effort to introduce and apply adaptive monitoring by avoiding additional development effort for controlling the monitoring adaptation. Although the generic approach is independent from the monitoring purpose, it still allows for substantial savings regarding the monitoring resource consumption as demonstrated by an example.