Abhijit Das, U. Pal, M. A. Ferrer-Ballester, M. Blumenstein
{"title":"基于后验概率的多模态眼生物识别决策级融合策略","authors":"Abhijit Das, U. Pal, M. A. Ferrer-Ballester, M. Blumenstein","doi":"10.1109/BTAS.2017.8272772","DOIUrl":null,"url":null,"abstract":"In this work, we propose a posterior probability-based decision-level fusion strategy for multimodal ocular biometric in the visible spectrum employing iris, sclera and peri-ocular trait. To best of our knowledge this is the first attempt to design a multimodal ocular biometrics using all three ocular traits. Employing all these traits in combination can help to increase the reliability and universality of the system. For instance in some scenarios, the sclera and iris can be highly occluded or for completely closed eyes scenario, the peri-ocular trait can be relied on for the decision. The proposed system is constituted of three independent traits and their combinations. The classification output of the trait which produces highest posterior probability is to consider as the final decision. An appreciable reliability and universal applicability of ocular trait are achieved in experiments conducted employing the proposed scheme.","PeriodicalId":372008,"journal":{"name":"2017 IEEE International Joint Conference on Biometrics (IJCB)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A decision-level fusion strategy for multimodal ocular biometric in visible spectrum based on posterior probability\",\"authors\":\"Abhijit Das, U. Pal, M. A. Ferrer-Ballester, M. Blumenstein\",\"doi\":\"10.1109/BTAS.2017.8272772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we propose a posterior probability-based decision-level fusion strategy for multimodal ocular biometric in the visible spectrum employing iris, sclera and peri-ocular trait. To best of our knowledge this is the first attempt to design a multimodal ocular biometrics using all three ocular traits. Employing all these traits in combination can help to increase the reliability and universality of the system. For instance in some scenarios, the sclera and iris can be highly occluded or for completely closed eyes scenario, the peri-ocular trait can be relied on for the decision. The proposed system is constituted of three independent traits and their combinations. The classification output of the trait which produces highest posterior probability is to consider as the final decision. An appreciable reliability and universal applicability of ocular trait are achieved in experiments conducted employing the proposed scheme.\",\"PeriodicalId\":372008,\"journal\":{\"name\":\"2017 IEEE International Joint Conference on Biometrics (IJCB)\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Joint Conference on Biometrics (IJCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BTAS.2017.8272772\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BTAS.2017.8272772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A decision-level fusion strategy for multimodal ocular biometric in visible spectrum based on posterior probability
In this work, we propose a posterior probability-based decision-level fusion strategy for multimodal ocular biometric in the visible spectrum employing iris, sclera and peri-ocular trait. To best of our knowledge this is the first attempt to design a multimodal ocular biometrics using all three ocular traits. Employing all these traits in combination can help to increase the reliability and universality of the system. For instance in some scenarios, the sclera and iris can be highly occluded or for completely closed eyes scenario, the peri-ocular trait can be relied on for the decision. The proposed system is constituted of three independent traits and their combinations. The classification output of the trait which produces highest posterior probability is to consider as the final decision. An appreciable reliability and universal applicability of ocular trait are achieved in experiments conducted employing the proposed scheme.