基于卷积神经网络的两相多模态图像融合

Kushal Kusram, S. Transue, Min-Hyung Choi
{"title":"基于卷积神经网络的两相多模态图像融合","authors":"Kushal Kusram, S. Transue, Min-Hyung Choi","doi":"10.1109/ICIP42928.2021.9506703","DOIUrl":null,"url":null,"abstract":"The fusion of multiple imaging modalities presents an important contribution to machine vision, but remains an ongoing challenge due to the limitations in traditional calibration methods that perform a single, global alignment. For depth and thermal imaging devices, sensor and lens intrinsics (FOV, resolution, etc.) may vary considerably, making per-pixel fusion accuracy difficult. In this paper, we present AccuFusion, a two-phase non-linear registration method to fuse multimodal images at a per-pixel level to obtain an efficient and accurate image registration. The two phases: the Coarse Fusion Network (CFN) and Refining Fusion Network (RFN), are designed to learn a robust image-space fusion that provides a non-linear mapping for accurate alignment. By employing the refinement process, we obtain per-pixel displacements to minimize local alignment errors and observe an increase of 18% in average accuracy over global registration.","PeriodicalId":314429,"journal":{"name":"2021 IEEE International Conference on Image Processing (ICIP)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-Phase Multimodal Image Fusion Using Convolutional Neural Networks\",\"authors\":\"Kushal Kusram, S. Transue, Min-Hyung Choi\",\"doi\":\"10.1109/ICIP42928.2021.9506703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fusion of multiple imaging modalities presents an important contribution to machine vision, but remains an ongoing challenge due to the limitations in traditional calibration methods that perform a single, global alignment. For depth and thermal imaging devices, sensor and lens intrinsics (FOV, resolution, etc.) may vary considerably, making per-pixel fusion accuracy difficult. In this paper, we present AccuFusion, a two-phase non-linear registration method to fuse multimodal images at a per-pixel level to obtain an efficient and accurate image registration. The two phases: the Coarse Fusion Network (CFN) and Refining Fusion Network (RFN), are designed to learn a robust image-space fusion that provides a non-linear mapping for accurate alignment. By employing the refinement process, we obtain per-pixel displacements to minimize local alignment errors and observe an increase of 18% in average accuracy over global registration.\",\"PeriodicalId\":314429,\"journal\":{\"name\":\"2021 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP42928.2021.9506703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP42928.2021.9506703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多种成像模式的融合对机器视觉做出了重要贡献,但由于传统校准方法执行单一全局校准的局限性,仍然是一个持续的挑战。对于深度和热成像设备,传感器和透镜的特性(视场、分辨率等)可能会有很大的差异,这使得每像素的融合精度变得困难。在本文中,我们提出了AccuFusion,一种两阶段非线性配准方法,用于在每像素级别融合多模态图像,以获得高效准确的图像配准。这两个阶段:粗融合网络(CFN)和精炼融合网络(RFN),旨在学习一种鲁棒的图像空间融合,为精确对准提供非线性映射。通过采用细化过程,我们获得了每像素的位移,以最小化局部对准误差,并观察到平均精度比全局配准提高了18%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-Phase Multimodal Image Fusion Using Convolutional Neural Networks
The fusion of multiple imaging modalities presents an important contribution to machine vision, but remains an ongoing challenge due to the limitations in traditional calibration methods that perform a single, global alignment. For depth and thermal imaging devices, sensor and lens intrinsics (FOV, resolution, etc.) may vary considerably, making per-pixel fusion accuracy difficult. In this paper, we present AccuFusion, a two-phase non-linear registration method to fuse multimodal images at a per-pixel level to obtain an efficient and accurate image registration. The two phases: the Coarse Fusion Network (CFN) and Refining Fusion Network (RFN), are designed to learn a robust image-space fusion that provides a non-linear mapping for accurate alignment. By employing the refinement process, we obtain per-pixel displacements to minimize local alignment errors and observe an increase of 18% in average accuracy over global registration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信