基于多层网络拉普拉斯谱描述符的电影剧本相似性分析

Majda Lafhel, L. Abrouk, H. Cherifi, M. Hassouni
{"title":"基于多层网络拉普拉斯谱描述符的电影剧本相似性分析","authors":"Majda Lafhel, L. Abrouk, H. Cherifi, M. Hassouni","doi":"10.1109/COMPENG50184.2022.9905452","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the performance of the graph distance measure \"Network Laplacian Spectra Descriptor\" in comparing the similarity between movie stories. We rely on a multilayer network model to extract three entities of networks (Characters in Scenes, Dialogue Keywords, Scene Location). Then, we compute the distance between the layers regarding the three aspects. We investigate the effectiveness of the measure using the 3-cycle movies of the Scream Saga.","PeriodicalId":211056,"journal":{"name":"2022 IEEE Workshop on Complexity in Engineering (COMPENG)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The similarity between movie scripts using Multilayer Network Laplacian Spectra Descriptor\",\"authors\":\"Majda Lafhel, L. Abrouk, H. Cherifi, M. Hassouni\",\"doi\":\"10.1109/COMPENG50184.2022.9905452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the performance of the graph distance measure \\\"Network Laplacian Spectra Descriptor\\\" in comparing the similarity between movie stories. We rely on a multilayer network model to extract three entities of networks (Characters in Scenes, Dialogue Keywords, Scene Location). Then, we compute the distance between the layers regarding the three aspects. We investigate the effectiveness of the measure using the 3-cycle movies of the Scream Saga.\",\"PeriodicalId\":211056,\"journal\":{\"name\":\"2022 IEEE Workshop on Complexity in Engineering (COMPENG)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Workshop on Complexity in Engineering (COMPENG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMPENG50184.2022.9905452\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Workshop on Complexity in Engineering (COMPENG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPENG50184.2022.9905452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了图距离度量“网络拉普拉斯谱描述符”在比较电影故事之间相似性方面的性能。我们依靠多层网络模型来提取三个网络实体(场景中的人物、对话关键词、场景位置)。然后,我们根据这三个方面计算层之间的距离。我们使用《尖叫传奇》的3个周期电影来研究该措施的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The similarity between movie scripts using Multilayer Network Laplacian Spectra Descriptor
In this paper, we investigate the performance of the graph distance measure "Network Laplacian Spectra Descriptor" in comparing the similarity between movie stories. We rely on a multilayer network model to extract three entities of networks (Characters in Scenes, Dialogue Keywords, Scene Location). Then, we compute the distance between the layers regarding the three aspects. We investigate the effectiveness of the measure using the 3-cycle movies of the Scream Saga.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信