有限时间内不可压缩三维矢量场中轨迹的中时分类

Marko Budivsi'c, S. Siegmund, Doan Thai Son, Igor Mezi'c
{"title":"有限时间内不可压缩三维矢量场中轨迹的中时分类","authors":"Marko Budivsi'c, S. Siegmund, Doan Thai Son, Igor Mezi'c","doi":"10.3934/dcdss.2016035","DOIUrl":null,"url":null,"abstract":"The mesochronic velocity is the average of the velocity field along trajectories generated by the same velocity field over a time interval of finite duration. In this paper we classify initial conditions of trajectories evolving in incompressible vector fields according to the character of motion of material around the trajectory. In particular, we provide calculations that can be used to determine the number of expanding directions and the presence of rotation from the characteristic polynomial of the Jacobian matrix of mesochronic velocity. In doing so, we show that (a) the mesochronic velocity can be used to characterize dynamical deformation of three-dimensional volumes, (b) the resulting mesochronic analysis is a finite-time extension of the Okubo--Weiss--Chong analysis of incompressible velocity fields, (c) the two-dimensional mesochronic analysis from Mezic et al. \\emph{A New Mixing Diagnostic and Gulf Oil Spill Movement}, Science 330, (2010), 486-489, extends to three-dimensional state spaces. Theoretical considerations are further supported by numerical computations performed for a dynamical system arising in fluid mechanics, the unsteady Arnold--Beltrami--Childress (ABC) flow.","PeriodicalId":166772,"journal":{"name":"arXiv: Chaotic Dynamics","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Mesochronic classification of trajectories in incompressible 3D vector fields over finite times\",\"authors\":\"Marko Budivsi'c, S. Siegmund, Doan Thai Son, Igor Mezi'c\",\"doi\":\"10.3934/dcdss.2016035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mesochronic velocity is the average of the velocity field along trajectories generated by the same velocity field over a time interval of finite duration. In this paper we classify initial conditions of trajectories evolving in incompressible vector fields according to the character of motion of material around the trajectory. In particular, we provide calculations that can be used to determine the number of expanding directions and the presence of rotation from the characteristic polynomial of the Jacobian matrix of mesochronic velocity. In doing so, we show that (a) the mesochronic velocity can be used to characterize dynamical deformation of three-dimensional volumes, (b) the resulting mesochronic analysis is a finite-time extension of the Okubo--Weiss--Chong analysis of incompressible velocity fields, (c) the two-dimensional mesochronic analysis from Mezic et al. \\\\emph{A New Mixing Diagnostic and Gulf Oil Spill Movement}, Science 330, (2010), 486-489, extends to three-dimensional state spaces. Theoretical considerations are further supported by numerical computations performed for a dynamical system arising in fluid mechanics, the unsteady Arnold--Beltrami--Childress (ABC) flow.\",\"PeriodicalId\":166772,\"journal\":{\"name\":\"arXiv: Chaotic Dynamics\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Chaotic Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/dcdss.2016035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcdss.2016035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

中时速度是同一速度场在有限持续时间内沿轨迹的速度场的平均值。本文根据不可压缩矢量场中轨迹周围物质运动的特点,对轨迹演化的初始条件进行了分类。特别是,我们提供了可用于确定扩展方向的数量和旋转存在的计算,从中慢速度雅可比矩阵的特征多项式。在此过程中,我们表明(a)中时速度可以用来表征三维体积的动态变形,(b)由此产生的中时分析是对不可压缩速度场的Okubo- Weiss- Chong分析的有限时间扩展,(c) Mezic等人的二维中时分析。\emph{一种新的混合诊断与墨西哥湾漏油运动},科学,(2010),486-489,扩展到三维状态空间。对流体力学中出现的非定常Arnold- Beltrami- Childress (ABC)流的数值计算进一步支持了理论考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mesochronic classification of trajectories in incompressible 3D vector fields over finite times
The mesochronic velocity is the average of the velocity field along trajectories generated by the same velocity field over a time interval of finite duration. In this paper we classify initial conditions of trajectories evolving in incompressible vector fields according to the character of motion of material around the trajectory. In particular, we provide calculations that can be used to determine the number of expanding directions and the presence of rotation from the characteristic polynomial of the Jacobian matrix of mesochronic velocity. In doing so, we show that (a) the mesochronic velocity can be used to characterize dynamical deformation of three-dimensional volumes, (b) the resulting mesochronic analysis is a finite-time extension of the Okubo--Weiss--Chong analysis of incompressible velocity fields, (c) the two-dimensional mesochronic analysis from Mezic et al. \emph{A New Mixing Diagnostic and Gulf Oil Spill Movement}, Science 330, (2010), 486-489, extends to three-dimensional state spaces. Theoretical considerations are further supported by numerical computations performed for a dynamical system arising in fluid mechanics, the unsteady Arnold--Beltrami--Childress (ABC) flow.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信