自适应时空卷积网络交通预测

Mingyang Zhang, Yong Li, Funing Sun, Diansheng Guo, Pan Hui
{"title":"自适应时空卷积网络交通预测","authors":"Mingyang Zhang, Yong Li, Funing Sun, Diansheng Guo, Pan Hui","doi":"10.1109/ICDM51629.2021.00191","DOIUrl":null,"url":null,"abstract":"Traffic prediction is a crucial task in many real-world applications. The task is challenging due to the implicit and dynamic spatio-temporal dependencies among traffic data. On the one hand, the spatial dependencies among traffic flows are latent and fluctuate with environmental conditions. On the other hand, the temporal dependencies among traffic flows also vary significantly over time and locations. In this paper, we propose Adaptive Spatio-Temporal Convolutional Network (ASTCN) to tackle these challenges. First, we propose a spatial graph learning module that learns the dynamic spatial relations among traffic data based on multiple influential factors. Furthermore, we design an adaptive temporal convolution module that captures complex temporal traffic dependencies with environment-aware dynamic filters. We conduct extensive experiments on three real-world traffic datasets. The results demonstrate that the proposed ASTCN consistently outperforms state-of-the-arts.","PeriodicalId":320970,"journal":{"name":"2021 IEEE International Conference on Data Mining (ICDM)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Adaptive Spatio-Temporal Convolutional Network for Traffic Prediction\",\"authors\":\"Mingyang Zhang, Yong Li, Funing Sun, Diansheng Guo, Pan Hui\",\"doi\":\"10.1109/ICDM51629.2021.00191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traffic prediction is a crucial task in many real-world applications. The task is challenging due to the implicit and dynamic spatio-temporal dependencies among traffic data. On the one hand, the spatial dependencies among traffic flows are latent and fluctuate with environmental conditions. On the other hand, the temporal dependencies among traffic flows also vary significantly over time and locations. In this paper, we propose Adaptive Spatio-Temporal Convolutional Network (ASTCN) to tackle these challenges. First, we propose a spatial graph learning module that learns the dynamic spatial relations among traffic data based on multiple influential factors. Furthermore, we design an adaptive temporal convolution module that captures complex temporal traffic dependencies with environment-aware dynamic filters. We conduct extensive experiments on three real-world traffic datasets. The results demonstrate that the proposed ASTCN consistently outperforms state-of-the-arts.\",\"PeriodicalId\":320970,\"journal\":{\"name\":\"2021 IEEE International Conference on Data Mining (ICDM)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Data Mining (ICDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM51629.2021.00191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Data Mining (ICDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM51629.2021.00191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在许多实际应用中,流量预测是一项至关重要的任务。由于交通数据之间隐含的、动态的时空依赖关系,这一任务具有挑战性。一方面,交通流之间的空间依赖关系是潜在的,并随着环境条件的变化而波动。另一方面,交通流之间的时间依赖性也随着时间和地点的变化而显著变化。在本文中,我们提出了自适应时空卷积网络(ASTCN)来解决这些挑战。首先,我们提出了一个基于多个影响因素的交通数据动态空间关系学习的空间图学习模块。此外,我们设计了一个自适应时间卷积模块,该模块使用环境感知动态滤波器捕获复杂的时间交通依赖关系。我们在三个真实世界的交通数据集上进行了广泛的实验。结果表明,所提出的ASTCN始终优于最先进的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Spatio-Temporal Convolutional Network for Traffic Prediction
Traffic prediction is a crucial task in many real-world applications. The task is challenging due to the implicit and dynamic spatio-temporal dependencies among traffic data. On the one hand, the spatial dependencies among traffic flows are latent and fluctuate with environmental conditions. On the other hand, the temporal dependencies among traffic flows also vary significantly over time and locations. In this paper, we propose Adaptive Spatio-Temporal Convolutional Network (ASTCN) to tackle these challenges. First, we propose a spatial graph learning module that learns the dynamic spatial relations among traffic data based on multiple influential factors. Furthermore, we design an adaptive temporal convolution module that captures complex temporal traffic dependencies with environment-aware dynamic filters. We conduct extensive experiments on three real-world traffic datasets. The results demonstrate that the proposed ASTCN consistently outperforms state-of-the-arts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信