PNCF:基于预训练嵌入的神经协同过滤

Jianqi Pan, M. Yamamura, Atsushi Yoshikawa
{"title":"PNCF:基于预训练嵌入的神经协同过滤","authors":"Jianqi Pan, M. Yamamura, Atsushi Yoshikawa","doi":"10.1117/12.2639163","DOIUrl":null,"url":null,"abstract":"In this paper, we propose the recommendation algorithm PNCF for neural networks. We designed a pre-training task for a distributed representation of embeddings based on many-to-many information. We used the word2vec technique in natural language processing to implement the embedding of users and items. We also constructed a brand-new video website tagauthor pre-training dataset. The code in this paper was implemented in PyTorch and is publicly available on GitHub (github.com/jannchie/ PNCF).","PeriodicalId":336892,"journal":{"name":"Neural Networks, Information and Communication Engineering","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PNCF: neural collaborative filtering based on pre-trained embedding\",\"authors\":\"Jianqi Pan, M. Yamamura, Atsushi Yoshikawa\",\"doi\":\"10.1117/12.2639163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose the recommendation algorithm PNCF for neural networks. We designed a pre-training task for a distributed representation of embeddings based on many-to-many information. We used the word2vec technique in natural language processing to implement the embedding of users and items. We also constructed a brand-new video website tagauthor pre-training dataset. The code in this paper was implemented in PyTorch and is publicly available on GitHub (github.com/jannchie/ PNCF).\",\"PeriodicalId\":336892,\"journal\":{\"name\":\"Neural Networks, Information and Communication Engineering\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks, Information and Communication Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2639163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks, Information and Communication Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2639163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了神经网络推荐算法PNCF。我们设计了一个基于多对多信息的嵌入式分布式表示的预训练任务。我们使用自然语言处理中的word2vec技术来实现用户和项目的嵌入。构建了一个全新的视频网站标签作者预训练数据集。本文中的代码是在PyTorch中实现的,并且可以在GitHub (github.com/jannchie/ PNCF)上公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PNCF: neural collaborative filtering based on pre-trained embedding
In this paper, we propose the recommendation algorithm PNCF for neural networks. We designed a pre-training task for a distributed representation of embeddings based on many-to-many information. We used the word2vec technique in natural language processing to implement the embedding of users and items. We also constructed a brand-new video website tagauthor pre-training dataset. The code in this paper was implemented in PyTorch and is publicly available on GitHub (github.com/jannchie/ PNCF).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信