多用户下行系统中深度学习辅助波束形成设计与误码率评估

Junbeom Kim, Hoon Lee, Seung‐Eun Hong, Seok-Hwan Park
{"title":"多用户下行系统中深度学习辅助波束形成设计与误码率评估","authors":"Junbeom Kim, Hoon Lee, Seung‐Eun Hong, Seok-Hwan Park","doi":"10.1109/ICUFN49451.2021.9528786","DOIUrl":null,"url":null,"abstract":"This paper studies deep learning-based beamforming design schemes for multi-user downlink systems. Two distinct objectives are considered: sum-rate maximization and min-rate maximization. Each of formulations is first tackled by classical majorization-minimization (MM) algorithms that find a locally optimum point iteratively. To reduce computational overheads of the MM algorithms, deep neural networks (DNNs) are introduced which yield optimized beamforming solutions from channel vector inputs. Performance of trained DNNs is evaluated in terms of bit-error rate (BER) measure. Numerical results show that deep learning approaches achieve the BER performance very close to MM algorithms with much reduced complexity. Also, it is desirable to adopt the minimum-rate criterion to achieve low BER performance rather than sum-rate.","PeriodicalId":318542,"journal":{"name":"2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning-Assisted Beamforming Design and BER Evaluation in Multi-User Downlink Systems\",\"authors\":\"Junbeom Kim, Hoon Lee, Seung‐Eun Hong, Seok-Hwan Park\",\"doi\":\"10.1109/ICUFN49451.2021.9528786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies deep learning-based beamforming design schemes for multi-user downlink systems. Two distinct objectives are considered: sum-rate maximization and min-rate maximization. Each of formulations is first tackled by classical majorization-minimization (MM) algorithms that find a locally optimum point iteratively. To reduce computational overheads of the MM algorithms, deep neural networks (DNNs) are introduced which yield optimized beamforming solutions from channel vector inputs. Performance of trained DNNs is evaluated in terms of bit-error rate (BER) measure. Numerical results show that deep learning approaches achieve the BER performance very close to MM algorithms with much reduced complexity. Also, it is desirable to adopt the minimum-rate criterion to achieve low BER performance rather than sum-rate.\",\"PeriodicalId\":318542,\"journal\":{\"name\":\"2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICUFN49451.2021.9528786\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUFN49451.2021.9528786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了基于深度学习的多用户下行系统波束形成设计方案。考虑了两个不同的目标:和速率最大化和最小速率最大化。每个公式首先由经典的最大化最小化(MM)算法处理,迭代地找到一个局部最优点。为了减少MM算法的计算开销,引入了深度神经网络(dnn),该网络从信道矢量输入产生优化的波束形成解决方案。训练后的深度神经网络的性能是根据误码率(BER)度量来评估的。数值结果表明,深度学习方法的误码率性能非常接近MM算法,并且大大降低了复杂度。此外,为了实现低误码率性能,最好采用最小速率标准,而不是采用和速率标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning-Assisted Beamforming Design and BER Evaluation in Multi-User Downlink Systems
This paper studies deep learning-based beamforming design schemes for multi-user downlink systems. Two distinct objectives are considered: sum-rate maximization and min-rate maximization. Each of formulations is first tackled by classical majorization-minimization (MM) algorithms that find a locally optimum point iteratively. To reduce computational overheads of the MM algorithms, deep neural networks (DNNs) are introduced which yield optimized beamforming solutions from channel vector inputs. Performance of trained DNNs is evaluated in terms of bit-error rate (BER) measure. Numerical results show that deep learning approaches achieve the BER performance very close to MM algorithms with much reduced complexity. Also, it is desirable to adopt the minimum-rate criterion to achieve low BER performance rather than sum-rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信