一种电影评论情感分析方法

M. B, C. S
{"title":"一种电影评论情感分析方法","authors":"M. B, C. S","doi":"10.1109/IC3IOT53935.2022.9767915","DOIUrl":null,"url":null,"abstract":"In this work we present an approach for sentiment analysis which uses movie review for determining the polarity of the movie. We extract movie review from popular site which we use as our data set. To determine this We present a unique machine learning strategy for identifying phrases in movie reviews. and to determine the polarity for each of the sentence. The approaches are being used Bag-of-words model, defining adjectives and adverbs, managing negations, bounding word frequencies, and employing Word Net synonyms knowledge are all examples of text aspects that may be extracted. We examined how our classifier works for obtaining best polarity for Tamil movie reviews.","PeriodicalId":430809,"journal":{"name":"2022 International Conference on Communication, Computing and Internet of Things (IC3IoT)","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Approach of Sentiment Analysis for Movie Reviews\",\"authors\":\"M. B, C. S\",\"doi\":\"10.1109/IC3IOT53935.2022.9767915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we present an approach for sentiment analysis which uses movie review for determining the polarity of the movie. We extract movie review from popular site which we use as our data set. To determine this We present a unique machine learning strategy for identifying phrases in movie reviews. and to determine the polarity for each of the sentence. The approaches are being used Bag-of-words model, defining adjectives and adverbs, managing negations, bounding word frequencies, and employing Word Net synonyms knowledge are all examples of text aspects that may be extracted. We examined how our classifier works for obtaining best polarity for Tamil movie reviews.\",\"PeriodicalId\":430809,\"journal\":{\"name\":\"2022 International Conference on Communication, Computing and Internet of Things (IC3IoT)\",\"volume\":\"121 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Communication, Computing and Internet of Things (IC3IoT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC3IOT53935.2022.9767915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Communication, Computing and Internet of Things (IC3IoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3IOT53935.2022.9767915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在这项工作中,我们提出了一种情感分析方法,该方法使用电影评论来确定电影的极性。我们从热门网站中提取电影评论作为我们的数据集。为了确定这一点,我们提出了一种独特的机器学习策略来识别电影评论中的短语。并确定每个句子的极性。这些方法包括使用词袋模型、定义形容词和副词、管理否定、限定词频以及使用word Net同义词知识,这些都是可以提取的文本方面的例子。我们研究了我们的分类器如何为泰米尔电影评论获得最佳极性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Approach of Sentiment Analysis for Movie Reviews
In this work we present an approach for sentiment analysis which uses movie review for determining the polarity of the movie. We extract movie review from popular site which we use as our data set. To determine this We present a unique machine learning strategy for identifying phrases in movie reviews. and to determine the polarity for each of the sentence. The approaches are being used Bag-of-words model, defining adjectives and adverbs, managing negations, bounding word frequencies, and employing Word Net synonyms knowledge are all examples of text aspects that may be extracted. We examined how our classifier works for obtaining best polarity for Tamil movie reviews.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信