高斯混合模型遗传算法在数据流聚类分析中的应用

M. Gao, Chan Tai-hua, Xiang-xiang Gao
{"title":"高斯混合模型遗传算法在数据流聚类分析中的应用","authors":"M. Gao, Chan Tai-hua, Xiang-xiang Gao","doi":"10.1109/ICICISYS.2010.5658322","DOIUrl":null,"url":null,"abstract":"Data stream is infinite data and quick stream speed, so traditional clustering algorithm can not be applied to data stream clustering directly. As an efficient tool for data analysis, Gaussian mixture model has been widely applied in the fields of signal and information processing. We can use Gaussian mixture model (GMM) simulate arbitrary clustering graphics. There are two critical problems for the clustering analysis technology to select the appropriate value of number of clusters and partition overlapping clusters. Base on an extending method of Gaussian mixture modeling, a new feature mining method named Gaussian Mixture Model with Genetic Algorithms is proposed in this paper. This method is use a probability density based data stream clustering which requires only the newly arrived data, not the entire historical data, and also can choose optimal estimation clusters number value. The algorithm can determine the number of Gaussian clusters and the parameters of each Gaussian through random split and merge operation of Genetic Algorithms. We can get the accurate information each attribute characteristic describe. So that can make an effective date stream mining.","PeriodicalId":339711,"journal":{"name":"2010 IEEE International Conference on Intelligent Computing and Intelligent Systems","volume":"15 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Application of Gaussian Mixture Model Genetic Algorithm in data stream clustering analysis\",\"authors\":\"M. Gao, Chan Tai-hua, Xiang-xiang Gao\",\"doi\":\"10.1109/ICICISYS.2010.5658322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data stream is infinite data and quick stream speed, so traditional clustering algorithm can not be applied to data stream clustering directly. As an efficient tool for data analysis, Gaussian mixture model has been widely applied in the fields of signal and information processing. We can use Gaussian mixture model (GMM) simulate arbitrary clustering graphics. There are two critical problems for the clustering analysis technology to select the appropriate value of number of clusters and partition overlapping clusters. Base on an extending method of Gaussian mixture modeling, a new feature mining method named Gaussian Mixture Model with Genetic Algorithms is proposed in this paper. This method is use a probability density based data stream clustering which requires only the newly arrived data, not the entire historical data, and also can choose optimal estimation clusters number value. The algorithm can determine the number of Gaussian clusters and the parameters of each Gaussian through random split and merge operation of Genetic Algorithms. We can get the accurate information each attribute characteristic describe. So that can make an effective date stream mining.\",\"PeriodicalId\":339711,\"journal\":{\"name\":\"2010 IEEE International Conference on Intelligent Computing and Intelligent Systems\",\"volume\":\"15 11\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Intelligent Computing and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICISYS.2010.5658322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Intelligent Computing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICISYS.2010.5658322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

数据流是无限数据,流速度快,传统的聚类算法不能直接应用于数据流聚类。高斯混合模型作为一种有效的数据分析工具,在信号和信息处理领域得到了广泛的应用。我们可以使用高斯混合模型(GMM)模拟任意聚类图形。聚类分析技术的两个关键问题是选择合适的聚类数和划分重叠聚类。本文在对高斯混合建模方法进行扩展的基础上,提出了一种基于遗传算法的高斯混合模型特征挖掘方法。该方法采用基于概率密度的数据流聚类方法,只需要新到达的数据,而不需要整个历史数据,并且可以选择最优的估计簇数值。该算法通过遗传算法的随机分割和合并操作来确定高斯聚类的数量和每个高斯的参数。我们可以得到每个属性特征描述的准确信息。这样可以进行有效的数据流挖掘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Gaussian Mixture Model Genetic Algorithm in data stream clustering analysis
Data stream is infinite data and quick stream speed, so traditional clustering algorithm can not be applied to data stream clustering directly. As an efficient tool for data analysis, Gaussian mixture model has been widely applied in the fields of signal and information processing. We can use Gaussian mixture model (GMM) simulate arbitrary clustering graphics. There are two critical problems for the clustering analysis technology to select the appropriate value of number of clusters and partition overlapping clusters. Base on an extending method of Gaussian mixture modeling, a new feature mining method named Gaussian Mixture Model with Genetic Algorithms is proposed in this paper. This method is use a probability density based data stream clustering which requires only the newly arrived data, not the entire historical data, and also can choose optimal estimation clusters number value. The algorithm can determine the number of Gaussian clusters and the parameters of each Gaussian through random split and merge operation of Genetic Algorithms. We can get the accurate information each attribute characteristic describe. So that can make an effective date stream mining.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信