{"title":"随机Satisfiabiliy","authors":"D. Achlioptas","doi":"10.3233/FAIA200993","DOIUrl":null,"url":null,"abstract":"In the last twenty years a significant amount of effort has been devoted to the study of randomly generated satisfiability instances. While a number of generative models have been proposed, uniformly random k-CNF formulas are by now the dominant and most studied model. One reason for this is that such formulas enjoy a number of intriguing mathematical properties, including the following: for each k≥3, there is a critical value, rk, of the clauses-to-variables ratio, r, such that for rrk it is unsatisfiable with probability that tends to 1 as n→∞. Algorithmically, even at densities much below rk, no polynomial-time algorithm is known that can find any solution even with constant probability, while for all densities greater than rk, the length of every resolution proof of unsatisfiability is exponential (and, thus, so is the running time of every DPLL-type algorithm). By now, the study of random k-CNF formulas has also attracted attention in areas such as mathematics and statistical physics and is at the center of an area of intense research activity. At the same time, random k-SAT instances are a popular benchmark for testing and tuning satisfiability algorithms. Indeed, some of the better practical ideas in use today come from insights gained by studying the performance of algorithms on them. We review old and recent mathematical results about random k-CNF formulas, demonstrating that the connection between computational complexity and phase transitions is both deep and highly nuanced.","PeriodicalId":250589,"journal":{"name":"Handbook of Satisfiability","volume":"87 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Random Satisfiabiliy\",\"authors\":\"D. Achlioptas\",\"doi\":\"10.3233/FAIA200993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the last twenty years a significant amount of effort has been devoted to the study of randomly generated satisfiability instances. While a number of generative models have been proposed, uniformly random k-CNF formulas are by now the dominant and most studied model. One reason for this is that such formulas enjoy a number of intriguing mathematical properties, including the following: for each k≥3, there is a critical value, rk, of the clauses-to-variables ratio, r, such that for rrk it is unsatisfiable with probability that tends to 1 as n→∞. Algorithmically, even at densities much below rk, no polynomial-time algorithm is known that can find any solution even with constant probability, while for all densities greater than rk, the length of every resolution proof of unsatisfiability is exponential (and, thus, so is the running time of every DPLL-type algorithm). By now, the study of random k-CNF formulas has also attracted attention in areas such as mathematics and statistical physics and is at the center of an area of intense research activity. At the same time, random k-SAT instances are a popular benchmark for testing and tuning satisfiability algorithms. Indeed, some of the better practical ideas in use today come from insights gained by studying the performance of algorithms on them. We review old and recent mathematical results about random k-CNF formulas, demonstrating that the connection between computational complexity and phase transitions is both deep and highly nuanced.\",\"PeriodicalId\":250589,\"journal\":{\"name\":\"Handbook of Satisfiability\",\"volume\":\"87 11\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Handbook of Satisfiability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/FAIA200993\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of Satisfiability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/FAIA200993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In the last twenty years a significant amount of effort has been devoted to the study of randomly generated satisfiability instances. While a number of generative models have been proposed, uniformly random k-CNF formulas are by now the dominant and most studied model. One reason for this is that such formulas enjoy a number of intriguing mathematical properties, including the following: for each k≥3, there is a critical value, rk, of the clauses-to-variables ratio, r, such that for rrk it is unsatisfiable with probability that tends to 1 as n→∞. Algorithmically, even at densities much below rk, no polynomial-time algorithm is known that can find any solution even with constant probability, while for all densities greater than rk, the length of every resolution proof of unsatisfiability is exponential (and, thus, so is the running time of every DPLL-type algorithm). By now, the study of random k-CNF formulas has also attracted attention in areas such as mathematics and statistical physics and is at the center of an area of intense research activity. At the same time, random k-SAT instances are a popular benchmark for testing and tuning satisfiability algorithms. Indeed, some of the better practical ideas in use today come from insights gained by studying the performance of algorithms on them. We review old and recent mathematical results about random k-CNF formulas, demonstrating that the connection between computational complexity and phase transitions is both deep and highly nuanced.