自相似集的熵和Hausdorff维数

James Evans
{"title":"自相似集的熵和Hausdorff维数","authors":"James Evans","doi":"10.1090/PROC/15569","DOIUrl":null,"url":null,"abstract":"Given a $k$-self similar set $X\\subset [0,1]^{d}$ we calculate both its Hausdorff dimension and its entropy, and show that these two quantities are in fact equal. This affirmatively resolves a conjecture of Adamczewski and Bell.","PeriodicalId":407889,"journal":{"name":"arXiv: Dynamical Systems","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The entropy and Hausdorff dimension of self-similar sets\",\"authors\":\"James Evans\",\"doi\":\"10.1090/PROC/15569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a $k$-self similar set $X\\\\subset [0,1]^{d}$ we calculate both its Hausdorff dimension and its entropy, and show that these two quantities are in fact equal. This affirmatively resolves a conjecture of Adamczewski and Bell.\",\"PeriodicalId\":407889,\"journal\":{\"name\":\"arXiv: Dynamical Systems\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Dynamical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/PROC/15569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/PROC/15569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定一个$k$-自相似集$X\子集[0,1]^{d}$,我们计算了它的Hausdorff维数和熵,并证明这两个量实际上是相等的。这肯定地解决了Adamczewski和Bell的一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The entropy and Hausdorff dimension of self-similar sets
Given a $k$-self similar set $X\subset [0,1]^{d}$ we calculate both its Hausdorff dimension and its entropy, and show that these two quantities are in fact equal. This affirmatively resolves a conjecture of Adamczewski and Bell.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信