基于决策值的支持向量机参数选择新方法

Linkai Luo, Dengfeng Huang, Hong Peng, Qifeng Zhou, G. Shao, Fan Yang
{"title":"基于决策值的支持向量机参数选择新方法","authors":"Linkai Luo, Dengfeng Huang, Hong Peng, Qifeng Zhou, G. Shao, Fan Yang","doi":"10.4156/JCIT.VOL5.ISSUE8.4","DOIUrl":null,"url":null,"abstract":"Abstract To overcome the disadvantage of CV-ACC method that the high-density sample region may be close to the optimal hyper-plane, a parameter selection method for support vector machine (SVM) based on the decision value, named as CV-SNRMDV method, is proposed in this paper. SNRMDV is used as the criterion of cross-validation (CV) in our method, which is defined as the ratio between the difference of medians of decision values and the sum of the standard deviations from the medians. Compared with the traditional cross-validation accuracy (CV-ACC) method, CV-SNRMDV makes use of the information of sample distribution and decision value. Consequently CV-SNRMDV overcomes the disadvantage of CV-ACC. The experiments show our method obtains a better test accuracy on the simulated dataset, while the test accuracies on benchmark datasets are close to CV-ACC.","PeriodicalId":360193,"journal":{"name":"J. Convergence Inf. Technol.","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A New Parameter Selection Method for Support Vector Machine Based on the Decision Value\",\"authors\":\"Linkai Luo, Dengfeng Huang, Hong Peng, Qifeng Zhou, G. Shao, Fan Yang\",\"doi\":\"10.4156/JCIT.VOL5.ISSUE8.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract To overcome the disadvantage of CV-ACC method that the high-density sample region may be close to the optimal hyper-plane, a parameter selection method for support vector machine (SVM) based on the decision value, named as CV-SNRMDV method, is proposed in this paper. SNRMDV is used as the criterion of cross-validation (CV) in our method, which is defined as the ratio between the difference of medians of decision values and the sum of the standard deviations from the medians. Compared with the traditional cross-validation accuracy (CV-ACC) method, CV-SNRMDV makes use of the information of sample distribution and decision value. Consequently CV-SNRMDV overcomes the disadvantage of CV-ACC. The experiments show our method obtains a better test accuracy on the simulated dataset, while the test accuracies on benchmark datasets are close to CV-ACC.\",\"PeriodicalId\":360193,\"journal\":{\"name\":\"J. Convergence Inf. Technol.\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Convergence Inf. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4156/JCIT.VOL5.ISSUE8.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Convergence Inf. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4156/JCIT.VOL5.ISSUE8.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

摘要针对CV-ACC方法高密度样本区域可能接近最优超平面的缺点,提出了一种基于决策值的支持向量机(SVM)参数选择方法CV-SNRMDV方法。我们的方法使用SNRMDV作为交叉验证(CV)的标准,它被定义为决策值的中位数之差与中位数标准差之和的比值。与传统的交叉验证精度(CV-ACC)方法相比,CV-SNRMDV利用了样本分布和决策值的信息。因此CV-SNRMDV克服了CV-ACC的缺点。实验表明,该方法在模拟数据集上获得了较好的测试精度,在基准数据集上的测试精度接近CV-ACC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Parameter Selection Method for Support Vector Machine Based on the Decision Value
Abstract To overcome the disadvantage of CV-ACC method that the high-density sample region may be close to the optimal hyper-plane, a parameter selection method for support vector machine (SVM) based on the decision value, named as CV-SNRMDV method, is proposed in this paper. SNRMDV is used as the criterion of cross-validation (CV) in our method, which is defined as the ratio between the difference of medians of decision values and the sum of the standard deviations from the medians. Compared with the traditional cross-validation accuracy (CV-ACC) method, CV-SNRMDV makes use of the information of sample distribution and decision value. Consequently CV-SNRMDV overcomes the disadvantage of CV-ACC. The experiments show our method obtains a better test accuracy on the simulated dataset, while the test accuracies on benchmark datasets are close to CV-ACC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信