数据驱动的最小数据太阳辐照度预报模型

C. Lyu, S. Basumallik, S. Eftekharnejad, Chongfang Xu
{"title":"数据驱动的最小数据太阳辐照度预报模型","authors":"C. Lyu, S. Basumallik, S. Eftekharnejad, Chongfang Xu","doi":"10.1109/TPEC51183.2021.9384949","DOIUrl":null,"url":null,"abstract":"An emerging new challenge introduced to solar generation forecasting is the accumulation and effective processing of raw weather data. This paper aims to address this challenge by presenting a hybrid approach to forecasting the solar irradiance, incorporating both clustering and feature extraction techniques. The developed method aims to significantly reduce the amount of data required for forecasting, and at the same time increase the accuracy of the forecast. A clustering and data selection strategy is developed that yields a reduced dataset for prediction. The performance of the forecasting approach is evaluated with real solar irradiance data collected throughout the year. Case studies demonstrate that solar irradiance can be accurately forecasted using only 20% of the full-scale training data, while also improving the forecast error compared to using the entire dataset.","PeriodicalId":354018,"journal":{"name":"2021 IEEE Texas Power and Energy Conference (TPEC)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Data-Driven Solar Irradiance Forecasting Model with Minimum Data\",\"authors\":\"C. Lyu, S. Basumallik, S. Eftekharnejad, Chongfang Xu\",\"doi\":\"10.1109/TPEC51183.2021.9384949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An emerging new challenge introduced to solar generation forecasting is the accumulation and effective processing of raw weather data. This paper aims to address this challenge by presenting a hybrid approach to forecasting the solar irradiance, incorporating both clustering and feature extraction techniques. The developed method aims to significantly reduce the amount of data required for forecasting, and at the same time increase the accuracy of the forecast. A clustering and data selection strategy is developed that yields a reduced dataset for prediction. The performance of the forecasting approach is evaluated with real solar irradiance data collected throughout the year. Case studies demonstrate that solar irradiance can be accurately forecasted using only 20% of the full-scale training data, while also improving the forecast error compared to using the entire dataset.\",\"PeriodicalId\":354018,\"journal\":{\"name\":\"2021 IEEE Texas Power and Energy Conference (TPEC)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Texas Power and Energy Conference (TPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TPEC51183.2021.9384949\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Texas Power and Energy Conference (TPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPEC51183.2021.9384949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

太阳能发电预报面临的新挑战是原始天气数据的积累和有效处理。本文旨在通过提出一种混合方法来预测太阳辐照度,结合聚类和特征提取技术来解决这一挑战。所开发的方法旨在显著减少预测所需的数据量,同时提高预测的准确性。开发了一种聚类和数据选择策略,产生用于预测的简化数据集。用全年收集的真实太阳辐照度数据对预报方法的性能进行了评价。案例研究表明,仅使用20%的全尺寸训练数据就可以准确预测太阳辐照度,同时与使用整个数据集相比,也可以改善预测误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Data-Driven Solar Irradiance Forecasting Model with Minimum Data
An emerging new challenge introduced to solar generation forecasting is the accumulation and effective processing of raw weather data. This paper aims to address this challenge by presenting a hybrid approach to forecasting the solar irradiance, incorporating both clustering and feature extraction techniques. The developed method aims to significantly reduce the amount of data required for forecasting, and at the same time increase the accuracy of the forecast. A clustering and data selection strategy is developed that yields a reduced dataset for prediction. The performance of the forecasting approach is evaluated with real solar irradiance data collected throughout the year. Case studies demonstrate that solar irradiance can be accurately forecasted using only 20% of the full-scale training data, while also improving the forecast error compared to using the entire dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信