{"title":"用于28 GHz 5G应用的高增益双寄生贴片加载宽带天线","authors":"W. A. Awan, M. Alibakhshikenari, E. Limiti","doi":"10.23919/ISAP47258.2021.9614441","DOIUrl":null,"url":null,"abstract":"This work presents the design of a high gain wideband antenna for 28 GHz band application. The antenna structure was inspired from a conventional circular patch which is modified using consecutive loading of two parasitic patch. The presented antenna offers a wideband to completely cover the globally allocated band spectrum for 28 GHz 5G applications. Moreover, the broad side radiation pattern, relatively compact size and high gain makes the proposed work potential candidate for future 5G applications.","PeriodicalId":132941,"journal":{"name":"2021 International Symposium on Antennas and Propagation (ISAP)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"High Gain Dual Parasitic Patch Loaded Wideband Antenna for 28 GHz 5G Applications\",\"authors\":\"W. A. Awan, M. Alibakhshikenari, E. Limiti\",\"doi\":\"10.23919/ISAP47258.2021.9614441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents the design of a high gain wideband antenna for 28 GHz band application. The antenna structure was inspired from a conventional circular patch which is modified using consecutive loading of two parasitic patch. The presented antenna offers a wideband to completely cover the globally allocated band spectrum for 28 GHz 5G applications. Moreover, the broad side radiation pattern, relatively compact size and high gain makes the proposed work potential candidate for future 5G applications.\",\"PeriodicalId\":132941,\"journal\":{\"name\":\"2021 International Symposium on Antennas and Propagation (ISAP)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Symposium on Antennas and Propagation (ISAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ISAP47258.2021.9614441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Symposium on Antennas and Propagation (ISAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ISAP47258.2021.9614441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High Gain Dual Parasitic Patch Loaded Wideband Antenna for 28 GHz 5G Applications
This work presents the design of a high gain wideband antenna for 28 GHz band application. The antenna structure was inspired from a conventional circular patch which is modified using consecutive loading of two parasitic patch. The presented antenna offers a wideband to completely cover the globally allocated band spectrum for 28 GHz 5G applications. Moreover, the broad side radiation pattern, relatively compact size and high gain makes the proposed work potential candidate for future 5G applications.