容错寄存器仿真的空间复杂度

G. Chockler, A. Spiegelman
{"title":"容错寄存器仿真的空间复杂度","authors":"G. Chockler, A. Spiegelman","doi":"10.1145/3087801.3087824","DOIUrl":null,"url":null,"abstract":"Driven by the rising popularity of cloud storage, the costs associated with implementing reliable storage services from a collection of fault-prone servers have recently become an actively studied question. The well-known ABD result shows that an f-tolerant register can be emulated using a collection of 2f+1 fault-prone servers each storing a single read-modify-write object, which is known to be optimal. In this paper we generalize this bound: we investigate the inherent space complexity of emulating reliable multi-writer registers as a function of the type of the base objects exposed by the underlying servers, the number of writers to the emulated register, the number of available servers, and the failure threshold. We establish a sharp separation between registers, and both max-registers (the base object type assumed by ABD) and CAS in terms of the resources (i.e., the number of base objects of the respective types) required to support the emulation; we show that no such separation exists between max-registers and CAS. Our main technical contribution is lower and upper bounds on the resources required in case the underlying base objects are fault-prone read/write registers. We show that the number of required registers is directly proportional to the number of writers and inversely proportional to the number of servers.","PeriodicalId":324970,"journal":{"name":"Proceedings of the ACM Symposium on Principles of Distributed Computing","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Space Complexity of Fault-Tolerant Register Emulations\",\"authors\":\"G. Chockler, A. Spiegelman\",\"doi\":\"10.1145/3087801.3087824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Driven by the rising popularity of cloud storage, the costs associated with implementing reliable storage services from a collection of fault-prone servers have recently become an actively studied question. The well-known ABD result shows that an f-tolerant register can be emulated using a collection of 2f+1 fault-prone servers each storing a single read-modify-write object, which is known to be optimal. In this paper we generalize this bound: we investigate the inherent space complexity of emulating reliable multi-writer registers as a function of the type of the base objects exposed by the underlying servers, the number of writers to the emulated register, the number of available servers, and the failure threshold. We establish a sharp separation between registers, and both max-registers (the base object type assumed by ABD) and CAS in terms of the resources (i.e., the number of base objects of the respective types) required to support the emulation; we show that no such separation exists between max-registers and CAS. Our main technical contribution is lower and upper bounds on the resources required in case the underlying base objects are fault-prone read/write registers. We show that the number of required registers is directly proportional to the number of writers and inversely proportional to the number of servers.\",\"PeriodicalId\":324970,\"journal\":{\"name\":\"Proceedings of the ACM Symposium on Principles of Distributed Computing\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM Symposium on Principles of Distributed Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3087801.3087824\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Symposium on Principles of Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3087801.3087824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在云存储日益普及的推动下,从一组容易出错的服务器中实现可靠存储服务的相关成本最近成为一个积极研究的问题。众所周知的ABD结果表明,可以使用2f+1个易出错服务器的集合来模拟容错寄存器,每个服务器存储单个读-修改-写对象,这是已知的最佳方法。在本文中,我们推广了这一界限:我们研究了模拟可靠的多写入器寄存器的固有空间复杂性,作为底层服务器暴露的基本对象类型,模拟寄存器的写入器数量,可用服务器数量和故障阈值的函数。我们在寄存器和最大寄存器(ABD假设的基本对象类型)和CAS之间建立了严格的分离,这两个寄存器在资源(即各自类型的基本对象的数量)方面都需要支持仿真;我们证明在最大寄存器和CAS之间不存在这种分离。我们的主要技术贡献是在底层基本对象是容易出错的读/写寄存器的情况下所需资源的下限和上限。我们表明,所需寄存器的数量与写入器的数量成正比,与服务器的数量成反比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Space Complexity of Fault-Tolerant Register Emulations
Driven by the rising popularity of cloud storage, the costs associated with implementing reliable storage services from a collection of fault-prone servers have recently become an actively studied question. The well-known ABD result shows that an f-tolerant register can be emulated using a collection of 2f+1 fault-prone servers each storing a single read-modify-write object, which is known to be optimal. In this paper we generalize this bound: we investigate the inherent space complexity of emulating reliable multi-writer registers as a function of the type of the base objects exposed by the underlying servers, the number of writers to the emulated register, the number of available servers, and the failure threshold. We establish a sharp separation between registers, and both max-registers (the base object type assumed by ABD) and CAS in terms of the resources (i.e., the number of base objects of the respective types) required to support the emulation; we show that no such separation exists between max-registers and CAS. Our main technical contribution is lower and upper bounds on the resources required in case the underlying base objects are fault-prone read/write registers. We show that the number of required registers is directly proportional to the number of writers and inversely proportional to the number of servers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信