基于语义标签的零射击文本多标记模型

Dan Dickinson, Ananth Raj GV, G. Fung
{"title":"基于语义标签的零射击文本多标记模型","authors":"Dan Dickinson, Ananth Raj GV, G. Fung","doi":"10.1109/TransAI51903.2021.00033","DOIUrl":null,"url":null,"abstract":"We introduce a transformer-based method to associate relevant tags to text passages or blocks such as categories to pages of a website, marking sections in an article, or social postings subject tagging. In contrast with traditional multi-label formulations, the proposed approach uses semantic definitions of the tags available during training, and the model outputs a binary prediction of whether the described category applies to a document or not. The transformer-based model learns the semantics of the definition of a tag, and therefore works for tags not seen during training. Performance on domain-specific datasets can be further improved via transfer learning after fine-tuning with relatively little additional labeled data required.","PeriodicalId":426766,"journal":{"name":"2021 Third International Conference on Transdisciplinary AI (TransAI)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Model for Zero-shot Text Multi-labeling Using Semantics-based Labels\",\"authors\":\"Dan Dickinson, Ananth Raj GV, G. Fung\",\"doi\":\"10.1109/TransAI51903.2021.00033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a transformer-based method to associate relevant tags to text passages or blocks such as categories to pages of a website, marking sections in an article, or social postings subject tagging. In contrast with traditional multi-label formulations, the proposed approach uses semantic definitions of the tags available during training, and the model outputs a binary prediction of whether the described category applies to a document or not. The transformer-based model learns the semantics of the definition of a tag, and therefore works for tags not seen during training. Performance on domain-specific datasets can be further improved via transfer learning after fine-tuning with relatively little additional labeled data required.\",\"PeriodicalId\":426766,\"journal\":{\"name\":\"2021 Third International Conference on Transdisciplinary AI (TransAI)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Third International Conference on Transdisciplinary AI (TransAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TransAI51903.2021.00033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Third International Conference on Transdisciplinary AI (TransAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TransAI51903.2021.00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了一种基于转换器的方法,将相关标签关联到文本段落或块,例如将类别关联到网站的页面、标记文章中的部分或社交帖子的主题标签。与传统的多标签公式相比,所提出的方法使用训练期间可用标签的语义定义,并且模型输出所描述的类别是否适用于文档的二进制预测。基于转换器的模型学习标记定义的语义,因此适用于训练期间未看到的标记。在特定领域数据集上的性能可以通过微调后的迁移学习进一步提高,所需的额外标记数据相对较少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Model for Zero-shot Text Multi-labeling Using Semantics-based Labels
We introduce a transformer-based method to associate relevant tags to text passages or blocks such as categories to pages of a website, marking sections in an article, or social postings subject tagging. In contrast with traditional multi-label formulations, the proposed approach uses semantic definitions of the tags available during training, and the model outputs a binary prediction of whether the described category applies to a document or not. The transformer-based model learns the semantics of the definition of a tag, and therefore works for tags not seen during training. Performance on domain-specific datasets can be further improved via transfer learning after fine-tuning with relatively little additional labeled data required.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信