一个进化的神经模糊递归网络

J. J. R. Avila, Jaime Pacheco Martinez, A. F. Ramírez
{"title":"一个进化的神经模糊递归网络","authors":"J. J. R. Avila, Jaime Pacheco Martinez, A. F. Ramírez","doi":"10.1109/ESDIS.2009.4938993","DOIUrl":null,"url":null,"abstract":"In this research, we propose an evolving neuro-fuzzy recurrent network (ENFRN). The network is capable to perceive the change in the actual system and adapt (self organize) itself to the new situation. The network generates a new hidden neuron if the smallest distance between the new data and all the existing hidden neurons (the winner neuron) is more than a given radius. We propose a new pruning algorithm based on the density. Density is the number of times each hidden neuron is used. If the value of the smallest density (the looser neuron) is smaller to a specified umbral, this neuron is pruned. We use a modified least square algorithm to train the parameters of the network. Structure and parameters learning are updated at the same time. The major contribution of this research is: we present the stability of the algorithm of the evolving neuro-fuzzy reccurrent network proposed. Two simulations give the effectiveness of the suggested algorithm.","PeriodicalId":257215,"journal":{"name":"2009 IEEE Workshop on Evolving and Self-Developing Intelligent Systems","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An evolving neuro-fuzzy recurrent network\",\"authors\":\"J. J. R. Avila, Jaime Pacheco Martinez, A. F. Ramírez\",\"doi\":\"10.1109/ESDIS.2009.4938993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, we propose an evolving neuro-fuzzy recurrent network (ENFRN). The network is capable to perceive the change in the actual system and adapt (self organize) itself to the new situation. The network generates a new hidden neuron if the smallest distance between the new data and all the existing hidden neurons (the winner neuron) is more than a given radius. We propose a new pruning algorithm based on the density. Density is the number of times each hidden neuron is used. If the value of the smallest density (the looser neuron) is smaller to a specified umbral, this neuron is pruned. We use a modified least square algorithm to train the parameters of the network. Structure and parameters learning are updated at the same time. The major contribution of this research is: we present the stability of the algorithm of the evolving neuro-fuzzy reccurrent network proposed. Two simulations give the effectiveness of the suggested algorithm.\",\"PeriodicalId\":257215,\"journal\":{\"name\":\"2009 IEEE Workshop on Evolving and Self-Developing Intelligent Systems\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Workshop on Evolving and Self-Developing Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESDIS.2009.4938993\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Workshop on Evolving and Self-Developing Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESDIS.2009.4938993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们提出了一个进化神经模糊递归网络(ENFRN)。网络能够感知实际系统的变化,并适应(自我组织)自己以适应新的情况。如果新数据与所有现有隐藏神经元(获胜神经元)之间的最小距离大于给定半径,网络将生成一个新的隐藏神经元。提出了一种基于密度的剪枝算法。密度是每个隐藏神经元被使用的次数。如果最小密度(松散神经元)的值小于指定的本影,则修剪该神经元。我们使用改进的最小二乘算法来训练网络的参数。同时更新结构和参数学习。本研究的主要贡献在于:我们提出了进化神经模糊递归网络算法的稳定性。仿真结果表明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An evolving neuro-fuzzy recurrent network
In this research, we propose an evolving neuro-fuzzy recurrent network (ENFRN). The network is capable to perceive the change in the actual system and adapt (self organize) itself to the new situation. The network generates a new hidden neuron if the smallest distance between the new data and all the existing hidden neurons (the winner neuron) is more than a given radius. We propose a new pruning algorithm based on the density. Density is the number of times each hidden neuron is used. If the value of the smallest density (the looser neuron) is smaller to a specified umbral, this neuron is pruned. We use a modified least square algorithm to train the parameters of the network. Structure and parameters learning are updated at the same time. The major contribution of this research is: we present the stability of the algorithm of the evolving neuro-fuzzy reccurrent network proposed. Two simulations give the effectiveness of the suggested algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信