二维维格纳势的有效计算

P. Ellinghaus, M. Nedjalkov, S. Selberherr
{"title":"二维维格纳势的有效计算","authors":"P. Ellinghaus, M. Nedjalkov, S. Selberherr","doi":"10.1109/IWCE.2014.6865812","DOIUrl":null,"url":null,"abstract":"The solution of the two-dimensional (2D) Wigner equation has become numerically feasible in recent times, using the Monte Carlo method fortified with the notion of signed particles. The calculation of the Wigner potential (WP) in these 2D simulations consumes a considerable part of the computation time. A reduction of the latter is therefore very desirable, in particular, if self-consistent solutions are pursued, where the WP must be recalculated many times. An algorithm is introduced here - named box discrete Fourier transform (BDFT) - that reduces the computational effort roughly by a factor of five.","PeriodicalId":168149,"journal":{"name":"2014 International Workshop on Computational Electronics (IWCE)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Efficient calculation of the two-dimensional Wigner potential\",\"authors\":\"P. Ellinghaus, M. Nedjalkov, S. Selberherr\",\"doi\":\"10.1109/IWCE.2014.6865812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The solution of the two-dimensional (2D) Wigner equation has become numerically feasible in recent times, using the Monte Carlo method fortified with the notion of signed particles. The calculation of the Wigner potential (WP) in these 2D simulations consumes a considerable part of the computation time. A reduction of the latter is therefore very desirable, in particular, if self-consistent solutions are pursued, where the WP must be recalculated many times. An algorithm is introduced here - named box discrete Fourier transform (BDFT) - that reduces the computational effort roughly by a factor of five.\",\"PeriodicalId\":168149,\"journal\":{\"name\":\"2014 International Workshop on Computational Electronics (IWCE)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Workshop on Computational Electronics (IWCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCE.2014.6865812\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Workshop on Computational Electronics (IWCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCE.2014.6865812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

利用蒙特卡罗方法和符号粒子的概念,二维(2D)维格纳方程的解在最近已经成为数值上可行的。在这些二维模拟中,Wigner势(WP)的计算占用了相当一部分计算时间。因此,减少后者是非常可取的,特别是如果追求自洽的解决方案,则必须多次重新计算WP。本文介绍了一种称为盒离散傅里叶变换(BDFT)的算法,它将计算量减少了大约五倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient calculation of the two-dimensional Wigner potential
The solution of the two-dimensional (2D) Wigner equation has become numerically feasible in recent times, using the Monte Carlo method fortified with the notion of signed particles. The calculation of the Wigner potential (WP) in these 2D simulations consumes a considerable part of the computation time. A reduction of the latter is therefore very desirable, in particular, if self-consistent solutions are pursued, where the WP must be recalculated many times. An algorithm is introduced here - named box discrete Fourier transform (BDFT) - that reduces the computational effort roughly by a factor of five.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信