多假设卡尔曼滤波的随机进化模型

S. Handke, Joshua Gehlen
{"title":"多假设卡尔曼滤波的随机进化模型","authors":"S. Handke, Joshua Gehlen","doi":"10.1109/SDF.2019.8916630","DOIUrl":null,"url":null,"abstract":"A new randomized approach for highly maneuvering targets based on multi hypothesis tracking is presented. The acceleration range - a parameter in current evolution models is used to design various motion models. The approach randomises this parameter to cover a wider range of maneuver characteristics. Simulation shows that the performance of the new method results in a more reliable track continuity.","PeriodicalId":186196,"journal":{"name":"2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Randomized Evolution Model for Multi Hypothesis Kalman Filter\",\"authors\":\"S. Handke, Joshua Gehlen\",\"doi\":\"10.1109/SDF.2019.8916630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new randomized approach for highly maneuvering targets based on multi hypothesis tracking is presented. The acceleration range - a parameter in current evolution models is used to design various motion models. The approach randomises this parameter to cover a wider range of maneuver characteristics. Simulation shows that the performance of the new method results in a more reliable track continuity.\",\"PeriodicalId\":186196,\"journal\":{\"name\":\"2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SDF.2019.8916630\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SDF.2019.8916630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于多假设跟踪的高机动目标随机化方法。利用当前演化模型中的加速度范围参数来设计各种运动模型。该方法将该参数随机化,以覆盖更大范围的机动特性。仿真结果表明,该方法具有更可靠的航迹连续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Randomized Evolution Model for Multi Hypothesis Kalman Filter
A new randomized approach for highly maneuvering targets based on multi hypothesis tracking is presented. The acceleration range - a parameter in current evolution models is used to design various motion models. The approach randomises this parameter to cover a wider range of maneuver characteristics. Simulation shows that the performance of the new method results in a more reliable track continuity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信